【C++航海王:追寻罗杰的编程之路】特殊类的设计方式你知道哪些?

简介: 【C++航海王:追寻罗杰的编程之路】特殊类的设计方式你知道哪些?

1 -> 不能被拷贝的类

拷贝只会放生在两个场景中:拷贝构造函数以及赋值运算符重载,因此想要让一个类禁止拷贝,
只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。

  • C++98

将拷贝构造函数与赋值运算符重载只声明不定义,并且将其访问权限设置为私有即可。

class CopyBan
{
public:
  CopyBan()
  {}
 
private:
  //拷贝构造函数声明
  CopyBan(const CopyBan& cb);
 
  //赋值运算符重载声明
  CopyBan& operator=(const CopyBan& cb);
};

原因:

  1. 设置成私有:如果只声明没有设置成private,用户自己如果在类外定义了,就可以不能禁止拷贝了
  2. 只声明不定义:不定义是因为该函数根本不会调用,定义了其实没有什么意义,不写反而简单,而且如果定义了就不会防止成员函数内部拷贝了。
  • C++11

C++11扩展delete的用法,delete除了释放new申请的资源外,如果在默认成员函数后跟上
= delete,表示让编译器删除掉该默认成员函数。

class CopyBan
{
public:
  CopyBan()
  {}
 
private:
  //拷贝构造函数声明
  CopyBan(const CopyBan& cb) = delete;
 
  //赋值运算符重载声明
  CopyBan& operator=(const CopyBan& cb) = delete;
};

2 -> 只能在堆上创建对象的类

实现方式:

  1. 将类的构造函数私有,拷贝构造声明成私有。防止别人调用拷贝在栈上生成对象。
  2. 提供一个静态的成员函数,在该静态成员函数中完成堆对象的创建。
class HeapOnly
{
public:
  static HeapOnly* CreateObject()
  {
    return new HeapOnly;
  }
 
private:
  HeapOnly() {}
 
  // C++98
  // 1.只声明,不实现。因为实现可能会很麻烦,而你本身不需要
  // 2.声明成私有
  //HeapOnly(const HeapOnly&);
 
  // C++11    
  HeapOnly(const HeapOnly&) = delete;
};


3 -> 只能在栈上创建对象的类

方法一:同上将构造函数私有化,然后设计静态方法创建对象返回即可。

class StackOnly
{
public:
  static StackOnly CreateObj()
  {
    return StackOnly();
  }
 
  // 禁掉operator new可以把下面用new 调用拷贝构造申请对象给禁掉
  // StackOnly obj = StackOnly::CreateObj();
  // StackOnly* ptr3 = new StackOnly(obj);
  void* operator new(size_t size) = delete;
  void operator delete(void* p) = delete;
 
private:
  StackOnly()
    :_a(0)
  {}
 
private:
  int _a;
};

4 -> 不能被继承的类

  • C++98
// C++98中构造函数私有化,派生类中调不到基类的构造函数。则无法继承
class NonInherit
{
public:
  static NonInherit GetInstance()
  {
    return NonInherit();
  }
 
private:
  NonInherit()
  {}
};
 
//派生类
class B : public NonInherit
{};
  • C++11

final关键字,final修饰类,表示该类不能被继承。

class NonInherit final
{}

5 -> 只能创建一个对象的类(单例模式)

设计模式:

设计模式(Design Pattern)是一套被反复使用、多数人知晓的、经过分类的、代码设计经验的

总结。为什么会产生设计模式这样的东西呢?就像人类历史发展会产生兵法。最开始部落之间打

仗时都是人拼人的对砍。后来春秋战国时期,七国之间经常打仗,就发现打仗也是有套路的,后

来孙子就总结出了《孙子兵法》。孙子兵法也是类似。


使用设计模式的目的:为了代码可重用性、让代码更容易被他人理解、保证代码可靠性。 设计模

式使代码编写真正工程化;设计模式是软件工程的基石脉络,如同大厦的结构一样。


单例模式:

一个类只能创建一个对象,即单例模式,该模式可以保证系统中该类只有一个实例,并提供一个

访问它的全局访问点,该实例被所有程序模块共享。比如在某个服务器程序中,该服务器的配置

信息存放在一个文件中,这些配置数据由一个单例对象统一读取,然后服务进程中的其他对象再

通过这个单例对象获取这些配置信息,这种方式简化了在复杂环境下的配置管理。

单例模式有两种实现模式:

  • 饿汉模式
class Singleton
{
public:
  //获取单例对象接口
  static Singleton* GetInstance()
  {
    return &m_instance;
  }
 
private:
  Singleton()
  {}
 
  //禁止使用拷贝构造
  Singleton(const Singleton& s) = delete;
 
  //禁止使用赋值运算符重载
  Singleton& operator=(const Singleton& s) = delete;
 
  //保证单例对象在静态区且只有一个
  static Singleton m_instance;//单例对象
};
 
//在程序入口之前就完成单例对象初始化
Singleton Singleton::m_instance;

如果这个单例对象在多线程高并发环境下频繁使用,性能要求较高,那么显然使用饿汉模式来避
免资源竞争,提高响应速度更好。

优点:

  1. 简单

缺点:

  1. 可能会导致进程启动慢,且如果有多个单例类对象实例启动顺序不确定。
  • 懒汉模式

如果单例对象构造十分耗时或者占用很多资源,比如加载插件啊, 初始化网络连接啊,读取
文件啊等等,而有可能该对象程序运行时不会用到,那么也要在程序一开始就进行初始化,
就会导致程序启动时非常的缓慢。 所以这种情况使用懒汉模式(延迟加载)更好。

class Singleton
{
public:
  static Singleton* GetInstance() 
  {
    // 注意这里一定要使用Double-Check的方式加锁,才能保证效率和线程安全
    if (nullptr == m_pInstance) 
    {
      m_mtx.lock();
      if (nullptr == m_pInstance) 
      {
        m_pInstance = new Singleton();
      }
      m_mtx.unlock();
    }
 
    return m_pInstance;
  }
 
  // 实现一个内嵌垃圾回收类    
  class CGarbo 
  {
  public:
    ~CGarbo() 
    {
      if (Singleton::m_pInstance)
        delete Singleton::m_pInstance;
    }
  };
 
  // 定义一个静态成员变量,程序结束时,系统会自动调用它的析构函数从而释放单例对象
  static CGarbo Garbo;
 
private:
  // 构造函数私有
  Singleton() {};
 
  // 防拷贝
  Singleton(Singleton const&);
  Singleton& operator=(Singleton const&);
 
  static Singleton* m_pInstance; // 单例对象指针
  static mutex m_mtx;        //互斥锁
};
 
Singleton* Singleton::m_pInstance = nullptr;
Singleton::CGarbo Garbo;
mutex Singleton::m_mtx;

优点:

  1. 第一次使用实例对象时,创建对象。进程启动无负载。多个单例实例启动顺序自由控制。

缺点:

  1. 复杂

感谢各位大佬支持!!!

互三啦!!!

目录
相关文章
|
5月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
1月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
43 0
|
1月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
110 0
|
3月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
112 12
|
4月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
97 16
|
4月前
|
编译器 C++
类和对象(中 )C++
本文详细讲解了C++中的默认成员函数,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载和取地址运算符重载等内容。重点分析了各函数的特点、使用场景及相互关系,如构造函数的主要任务是初始化对象,而非创建空间;析构函数用于清理资源;拷贝构造与赋值运算符的区别在于前者用于创建新对象,后者用于已存在的对象赋值。同时,文章还探讨了运算符重载的规则及其应用场景,并通过实例加深理解。最后强调,若类中存在资源管理,需显式定义拷贝构造和赋值运算符以避免浅拷贝问题。
|
4月前
|
存储 编译器 C++
类和对象(上)(C++)
本篇内容主要讲解了C++中类的相关知识,包括类的定义、实例化及this指针的作用。详细说明了类的定义格式、成员函数默认为inline、访问限定符(public、protected、private)的使用规则,以及class与struct的区别。同时分析了类实例化的概念,对象大小的计算规则和内存对齐原则。最后介绍了this指针的工作机制,解释了成员函数如何通过隐含的this指针区分不同对象的数据。这些知识点帮助我们更好地理解C++中类的封装性和对象的实现原理。
|
5月前
|
存储 缓存 C++
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
|
4月前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
234 6
|
4月前
|
编译器 C++
类和对象(下)C++
本内容主要讲解C++中的初始化列表、类型转换、静态成员、友元、内部类、匿名对象及对象拷贝时的编译器优化。初始化列表用于成员变量定义初始化,尤其对引用、const及无默认构造函数的类类型变量至关重要。类型转换中,`explicit`可禁用隐式转换。静态成员属类而非对象,受访问限定符约束。内部类是独立类,可增强封装性。匿名对象生命周期短,常用于临时场景。编译器会优化对象拷贝以提高效率。最后,鼓励大家通过重复练习提升技能!