【C++航海王:追寻罗杰的编程之路】多态你了解多少?

简介: 【C++航海王:追寻罗杰的编程之路】多态你了解多少?

1 -> 多态的概念

1.1 -> 概念

多态的概念:通俗来说,就是多种形态,具体点就是去完成某个行为,当不同的对象去完成时会产生不同的状态。

比方说买票这个行为,当普通人买票时,是全价票;学生买票时,是半价票;军人买票时,是优先购票。

2 -> 多态的定义及实现

2.1 -> 多态的构成条件

多态是在不同继承关系的类对象,去调用同一函数,产生了不同的行为。比如Student继承了Person。Person对象买票全价,Student对象买票半价。

那么在继承中要构成多态还有两个条件

  1. 必须通过基类的指针或者引用调用虚函数。
  2. 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写。

2.2 -> 虚函数

虚函数:即被virtual修饰的类成员函数称为虚函数。

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
using namespace std;
 
class Person 
{
public:
  virtual void BuyTicket() 
  { 
    cout << "买票-全价" << endl; 
  }
};

2.3 -> 虚函数的重写

虚函数的重写(覆盖):派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的返回值类型、函数名字、参数列表完全相同),称子类的虚函数重写了基类的虚函数。

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
using namespace std;
 
class Person
{
public:
  virtual void BuyTicket()
  {
    cout << "买票-全价" << endl;
  }
};
 
class Student : public Person
{
public:
  virtual void BuyTicket()
  {
    cout << "买票-半价" << endl;
  }
 
  /*注意:在重写基类虚函数时,派生类的虚函数在不加virtual关键字时,虽然也可以构成重写(因
  为继承后基类的虚函数被继承下来了在派生类依旧保持虚函数属性),但是该种写法不是很规范,不建议
  这样使用*/
  /*void BuyTicket() { cout << "买票-半价" << endl; }*/
};
 
void Func(Person& p)
{
  p.BuyTicket();
}
 
int main()
{
  Person ps;
  Student st;
 
  Func(ps);
  Func(st);
 
  return 0;
}

虚函数重写的两个例外:

1. 协变(基类与派生类虚函数返回值类型不同)

派生类重写基类虚函数时,与基类函数返回值类型不同。即基类虚函数返回基类对象的指针或引用,派生类虚函数返回派生类对象的指针或引用时,称为协变。

class A {};
 
class B : public A {};
 
class Person 
{
public:
  virtual A* f() 
  { 
    return new A; 
  }
};
 
class Student : public Person 
{
public:
  virtual B* f() 
  { 
    return new B; 
  }
};

2. 析构函数的重写(基类与派生类析构函数的名字不同)

如果基类的析构函数为虚函数,此时派生类析构函数只要定义,无论是否加virtual关键字,都与基类的析构函数构成重写,虽然基类与派生类析构函数名字不同。看起来违背了重写规则,其实不然,这里可以理解为编译器对析构函数的名称做了特殊处理,编译后析构函数的名称统一处理成destructor。

class Person 
{
public:
  virtual ~Person() 
  { 
    cout << "~Person()" << endl; 
  }
};
 
class Student : public Person 
{
public:
  virtual ~Student() 
  { 
    cout << "~Student()" << endl; 
  }
};
 
// 只有派生类Student的析构函数重写了Person的析构函数,下面的delete对象调用析构函
// 数,才能构成多态,才能保证p1和p2指向的对象正确的调用析构函数。
int main()
{
  Person* p1 = new Person;
  Person* p2 = new Student;
 
  delete p1;
  delete p2;
 
  return 0;
}

2.4 -> C++11 override和final

从上面可以看出,C++对函数重写的要求比较严格,但是有些情况下由于疏忽,可能会导致函数名字母次序写反而无法构成重载,而这种错误在编译期间是不会报出的,只有在程序运行时没有得到预期

结果才来debug会得不偿失。因此:C++11提供了override和final两个关键字,可以帮助用户检测是否重写。

1. final:修饰虚函数,表示该虚函数不能再被重写

class Car
{
public:
  virtual void Drive() final {}
};
 
class Benz :public Car
{
public:
  virtual void Drive() 
  { 
    cout << "Benz-舒适" << endl; 
  }
};

2. override:检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错。

class Car 
{
public:
  virtual void Drive() {}
};
 
class Benz :public Car 
{
public:
  virtual void Drive() override 
  { 
    cout << "Benz-舒适" << endl; 
  }
};

2.5 -> 重载、覆盖(重写)、隐藏(重定义)的对比

3 -> 抽象类

3.1 -> 概念

在虚函数的后面写上 = 0,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承。

class Car
{
public:
  virtual void Drive() = 0;
};
 
class Benz :public Car
{
public:
  virtual void Drive()
  {
    cout << "Benz-舒适" << endl;
  }
};
 
class BMW :public Car
{
public:
  virtual void Drive()
  {
    cout << "BMW-操控" << endl;
  }
};
 
void Test()
{
  Car* pBenz = new Benz;
  pBenz->Drive();
 
  Car* pBMW = new BMW;
  pBMW->Drive();
}
 
int main()
{
 
  Test();
 
  return 0;
}

3.2 -> 接口继承和实现继承

普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。

4 -> 多态的原理

4.1 -> 虚函数表

// 这里常考一道笔试题:sizeof(Base)是多少?
class Base
{
public:
  virtual void Func1()
  {
    cout << "Func1()" << endl;
  }
 
private:
  int _b = 1;
};

通过观察测试我们发现b对象是8bytes,除了_b成员,还多一个__vfptr放在对象的前面(注意有些

平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代

表virtual,f代表function)。一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数

的地址要被放到虚函数表中,虚函数表也简称虚表,。那么派生类中这个表放了些什么呢?我们

接着往下分析。

// 针对上面的代码我们做出以下改造
// 1.我们增加一个派生类Derive去继承Base
// 2.Derive中重写Func1
// 3.Base再增加一个虚函数Func2和一个普通函数Func3
class Base
{
public:
  virtual void Func1()
  {
    cout << "Base::Func1()" << endl;
  }
 
  virtual void Func2()
  {
    cout << "Base::Func2()" << endl;
  }
 
  void Func3()
  {
    cout << "Base::Func3()" << endl;
  }
 
private:
  int _b = 1;
};
 
class Derive : public Base
{
public:
  virtual void Func1()
  {
    cout << "Derive::Func1()" << endl;
  }
private:
  int _d = 2;
};
 
int main()
{
  Base b;
  Derive d;
 
  return 0;
}


通过观察和测试,我们发现了以下几点问题:

  1. 派生类对象d中也有一个虚表指针,d对象由两部分构成,一部分是父类继承下来的成员,虚
    表指针也就是存在部分的另一部分是自己的成员。
  2. 基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1完成了重写,所以d的虚表
    中存的是重写的Derive::Func1,所以虚函数的重写也叫作覆盖
    ,覆盖就是指虚表中虚函数
    的覆盖。重写是语法的叫法,覆盖是原理层的叫法。
  3. 另外Func2继承下来后是虚函数,所以放进了虚表,Func3也继承下来了,但是不是虚函
    数,所以不会放进虚表。
  4. 虚函数表本质是一个存虚函数指针的指针数组,一般情况这个数组最后面放了一个nullptr。
  5. 总结一下派生类的虚表生成:a.先将基类中的虚表内容拷贝一份到派生类虚表中 b.如果派生
    类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数 c.派生类自己
    新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后。
  6. 这里还有一个童鞋们很容易混淆的问题:虚函数存在哪的?虚表存在哪的? 答:虚函数存在

虚表,虚表存在对象中。注意上面的回答的错的。但是很多童鞋都是这样深以为然的。注意

虚表存的是虚函数指针,不是虚函数,虚函数和普通函数一样的,都是存在代码段的,只是

他的指针又存到了虚表中。另外对象中存的不是虚表,存的是虚表指针。

4.2 -> 多态的原理

上面分析了这么多,那么多态的原理到底是什么呢?这里Func函数传Person调用的Person::BuyTicket,传Student调用的是Student::BuyTicket

class Person 
{
public:
  virtual void BuyTicket() 
  { 
    cout << "买票-全价" << endl; 
  }
};
 
class Student : public Person 
{
public:
  virtual void BuyTicket() 
  { 
    cout << "买票-半价" << endl; 
  }
};
 
void Func(Person& p)
{
  p.BuyTicket();
}
 
int main()
{
  Person Mike;
  Func(Mike);
 
  Student Johnson;
  Func(Johnson);
 
  return 0;
}
  1. 观察下图的红色箭头我们看到,p是指向mike对象时,p->BuyTicket在mike的虚表中找到虚
    函数是Person::BuyTicket。
  2. 观察下图的蓝色箭头我们看到,p是指向johnson对象时,p->BuyTicket在johson的虚表中
    找到虚函数是Student::BuyTicket。
  3. 这样就实现出了不同对象去完成同一行为时,展现出不同的形态。
  4. 反过来思考我们要达到多态,有两个条件,一个是虚函数覆盖,一个是对象的指针或引用调
    用虚函数。反思一下为什么?
  5. 再通过下面的汇编代码分析,看出满足多态以后的函数调用,不是在编译时确定的,是运行
    起来以后到对象的中取找的。不满足多态的函数调用时编译时确认好的。

void Func(Person* p)
{
 p->BuyTicket();
}
int main()
{
 Person mike;
 Func(&mike);
 mike.BuyTicket();
    
 return 0;
}
// 以下汇编代码中跟你这个问题不相关的都被去掉了
void Func(Person* p)
{
...
 p->BuyTicket();
// p中存的是mike对象的指针,将p移动到eax中
001940DE  mov         eax,dword ptr [p]
// [eax]就是取eax值指向的内容,这里相当于把mike对象头4个字节(虚表指针)移动到了edx
001940E1  mov         edx,dword ptr [eax]
// [edx]就是取edx值指向的内容,这里相当于把虚表中的头4字节存的虚函数指针移动到了eax
00B823EE  mov         eax,dword ptr [edx]
// call eax中存虚函数的指针。这里可以看出满足多态的调用,不是在编译时确定的,是运行起来
以后到对象的中取找的。
001940EA  call        eax  
00头1940EC  cmp         esi,esp  
}
int main()
{
... 
// 首先BuyTicket虽然是虚函数,但是mike是对象,不满足多态的条件,所以这里是普通函数的调
用转换成地址时,是在编译时已经从符号表确认了函数的地址,直接call 地址
 mike.BuyTicket();
00195182  lea         ecx,[mike]
00195185  call        Person::BuyTicket (01914F6h)  
... 
}

4.3 -> 动态绑定与静态绑定

  1. 静态绑定又称为前期绑定(早绑定),在程序编译期间确定了程序的行为,也称为静态多态,
    比如:函数重载。
  1. 动态绑定又称后期绑定(晚绑定),是在程序运行期间,根据具体拿到的类型确定程序的具体
    行为,调用具体的函数,也称为动态多态。

5 -> 单继承和多继承关系的虚函数表

需要注意的是在单继承和多继承关系中,下面我们去关注的是派生类对象的虚表模型,因为基类
的虚表模型前面我们已经看过了,没什么需要特别研究的。

5.1 -> 单继承中的虚函数表

class Base 
{
public:
  virtual void func1() 
  { 
    cout << "Base::func1" << endl; 
  }
 
  virtual void func2() 
  {
    cout << "Base::func2" << endl; 
  }
 
private:
  int a;
};
 
class Derive :public Base 
{
public:
  virtual void func1() 
  { 
    cout << "Derive::func1" << endl; 
  }
 
  virtual void func3() 
  {
    cout << "Derive::func3" << endl;
  }
 
  virtual void func4() 
  { 
    cout << "Derive::func4" << endl; 
  }
 
private:
  int b;
};

观察下图中的监视窗口中我们发现看不见func3和func4。这里是编译器的监视窗口故意隐藏了这
两个函数,也可以认为是他的一个小bug。那么我们如何查看d的虚表呢?下面我们使用代码打印
出虚表中的函数。

typedef void(*VFPTR) ();
 
void PrintVTable(VFPTR vTable[])
{
  // 依次取虚表中的虚函数指针打印并调用。调用就可以看出存的是哪个函数
  cout << " 虚表地址>" << vTable << endl;
  for (int i = 0; vTable[i] != nullptr; ++i)
  {
    printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);
 
    VFPTR f = vTable[i];
    f();
  }
 
  cout << endl;
}
 
int main()
{
  Base b;
  Derive d;
  // 思路:取出b、d对象的头4bytes,就是虚表的指针,前面我们说了虚函数表本质是一个存虚函数指针的指针数组,这个数组最后面放了一个nullptr
    // 1.先取b的地址,强转成一个int*的指针
    // 2.再解引用取值,就取到了b对象头4bytes的值,这个值就是指向虚表的指针
    // 3.再强转成VFPTR*,因为虚表就是一个存VFPTR类型(虚函数指针类型)的数组。
    // 4.虚表指针传递给PrintVTable进行打印虚表
    // 5.需要说明的是这个打印虚表的代码经常会崩溃,因为编译器有时对虚表的处理不干净,虚表最
    //后面没有放nullptr,导致越界,这是编译器的问题。我们只需要点目录栏的 - 生成 - 清理解决方案,再编译就好了。
  VFPTR * vTableb = (VFPTR*)(*(int*)&b);
  PrintVTable(vTableb);
 
  VFPTR* vTabled = (VFPTR*)(*(int*)&d);
  PrintVTable(vTabled);
 
  return 0;
}


5.2 -> 多继承中的虚函数表

class Base1 
{
public:
  virtual void func1() 
  { 
    cout << "Base1::func1" << endl; 
  }
 
  virtual void func2() 
  { 
    cout << "Base1::func2" << endl; 
  }
 
private:
  int b1;
};
 
class Base2 
{
public:
  virtual void func1() 
  { 
    cout << "Base2::func1" << endl; 
  }
 
  virtual void func2() 
  { 
    cout << "Base2::func2" << endl;
  }
 
private:
  int b2;
};
 
class Derive : public Base1, public Base2 
{
public:
  virtual void func1() 
  { 
    cout << "Derive::func1" << endl; 
  }
 
  virtual void func3() 
  {
    cout << "Derive::func3" << endl; 
  }
 
private:
  int d1;
};
 
typedef void(*VFPTR) ();
 
void PrintVTable(VFPTR vTable[])
{
  cout << " 虚表地址>" << vTable << endl;
  for (int i = 0; vTable[i] != nullptr; ++i)
  {
    printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);
 
    VFPTR f = vTable[i];
    f();
  }
 
  cout << endl;
}
 
int main()
{
  Derive d;
 
  VFPTR* vTableb1 = (VFPTR*)(*(int*)&d);
  PrintVTable(vTableb1);
 
  VFPTR* vTableb2 = (VFPTR*)(*(int*)((char*)&d + sizeof(Base1)));
  PrintVTable(vTableb2);
 
  return 0;
}

观察下图可以看出:多继承派生类的未重写的虚函数放在第一个继承基类部分的虚函数表中。


感谢各位大佬支持!!!

互三啦!!!

目录
相关文章
|
5月前
|
C++
C++ 语言异常处理实战:在编程潮流中坚守稳定,开启代码可靠之旅
【8月更文挑战第22天】C++的异常处理机制是确保程序稳定的关键特性。它允许程序在遇到错误时优雅地响应而非直接崩溃。通过`throw`抛出异常,并用`catch`捕获处理,可使程序控制流跳转至错误处理代码。例如,在进行除法运算或文件读取时,若发生除数为零或文件无法打开等错误,则可通过抛出异常并在调用处捕获来妥善处理这些情况。恰当使用异常处理能显著提升程序的健壮性和维护性。
92 2
|
3月前
|
存储 C++ UED
【实战指南】4步实现C++插件化编程,轻松实现功能定制与扩展
本文介绍了如何通过四步实现C++插件化编程,实现功能定制与扩展。主要内容包括引言、概述、需求分析、设计方案、详细设计、验证和总结。通过动态加载功能模块,实现软件的高度灵活性和可扩展性,支持快速定制和市场变化响应。具体步骤涉及配置文件构建、模块编译、动态库入口实现和主程序加载。验证部分展示了模块加载成功的日志和配置信息。总结中强调了插件化编程的优势及其在多个方面的应用。
501 69
|
5月前
|
算法 C语言 C++
C++语言学习指南:从新手到高手,一文带你领略系统编程的巅峰技艺!
【8月更文挑战第22天】C++由Bjarne Stroustrup于1985年创立,凭借卓越性能与灵活性,在系统编程、游戏开发等领域占据重要地位。它继承了C语言的高效性,并引入面向对象编程,使代码更模块化易管理。C++支持基本语法如变量声明与控制结构;通过`iostream`库实现输入输出;利用类与对象实现面向对象编程;提供模板增强代码复用性;具备异常处理机制确保程序健壮性;C++11引入现代化特性简化编程;标准模板库(STL)支持高效编程;多线程支持利用多核优势。虽然学习曲线陡峭,但掌握后可开启高性能编程大门。随着新标准如C++20的发展,C++持续演进,提供更多开发可能性。
98 0
|
2月前
|
存储 编译器 数据安全/隐私保护
【C++】多态
多态是面向对象编程中的重要特性,允许通过基类引用调用派生类的具体方法,实现代码的灵活性和扩展性。其核心机制包括虚函数、动态绑定及继承。通过声明虚函数并让派生类重写这些函数,可以在运行时决定具体调用哪个版本的方法。此外,多态还涉及虚函数表(vtable)的使用,其中存储了虚函数的指针,确保调用正确的实现。为了防止资源泄露,基类的析构函数应声明为虚函数。多态的底层实现涉及对象内部的虚函数表指针,指向特定于类的虚函数表,支持动态方法解析。
36 1
|
3月前
|
安全 程序员 编译器
【实战经验】17个C++编程常见错误及其解决方案
想必不少程序员都有类似的经历:辛苦敲完项目代码,内心满是对作品品质的自信,然而当静态扫描工具登场时,却揭示出诸多隐藏的警告问题。为了让自己的编程之路更加顺畅,也为了持续精进技艺,我想借此机会汇总分享那些常被我们无意间忽视却又导致警告的编程小细节,以此作为对未来的自我警示和提升。
454 12
|
2月前
|
消息中间件 存储 安全
|
3月前
|
编译器 C++
C++入门12——详解多态1
C++入门12——详解多态1
59 2
C++入门12——详解多态1
|
3月前
|
存储 搜索推荐 C++
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器2
【C++篇】深度剖析C++ STL:玩转 list 容器,解锁高效编程的秘密武器
77 2
|
4月前
|
存储 算法 C++
C++提高篇:泛型编程和STL技术详解,探讨C++更深层的使用
文章详细探讨了C++中的泛型编程与STL技术,重点讲解了如何使用模板来创建通用的函数和类,以及模板在提高代码复用性和灵活性方面的作用。
71 2
C++提高篇:泛型编程和STL技术详解,探讨C++更深层的使用
|
3月前
|
安全 程序员 编译器
【C++篇】继承之韵:解构编程奥义,领略面向对象的至高法则
【C++篇】继承之韵:解构编程奥义,领略面向对象的至高法则
101 11