【C++航海王:追寻罗杰的编程之路】C++11(一)

简介: 【C++航海王:追寻罗杰的编程之路】C++11(一)

1 -> C++11简介

在2003年C++标准委员会曾经提交了一份技术勘误表(简称TC1),使得C++03这个名字已经取代了

C++98称为C++11之前的最新C++标准名称。不过由于C++03(TC1)主要是对C++98标准中的漏洞

进行修复,语言的核心部分则没有改动,因此人们习惯性的把两个标准合并称为C++98/03标准。

从C++0x到C++11,C++标准10年磨一剑,第二个真正意义上的标准珊珊来迟。相比于

C++98/03,C++11则带来了数量可观的变化,其中包含了约140个新特性,以及对C++03标准中

约600个缺陷的修正,这使得C++11更像是从C++98/03中孕育出的一种新语言。相比较而言,

C++11能更好地用于系统开发和库开发、语法更加泛华和简单化、更加稳定和安全,不仅功能更

强大,而且能提升程序员的开发效率,公司实际项目开发中也用得比较多。

2 -> 统一的列表初始化

2.1 -> {}初始化

在C++98中,标准允许使用花括号{}对数组或者结构体元素进行统一的列表初始值设定。

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
using namespace std;
 
struct fyd
{
  int x;
  int y;
};
 
int main()
{
  int array1[] = { 1, 2, 3, 4, 5 };
  int array2[5] = { 0 };
  fyd p = { 1, 2 };
 
  return 0;
}

C++11扩大了用大括号括起的列表(初始化列表)的使用范围,使其可用于所有的内置类型和用户自
定义的类型,使用初始化列表时,可添加等号(=),也可不添加。

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
using namespace std;
 
struct fyd
{
  int x;
  int y;
};
 
int main()
{
  int x1 = 1;
  int x2{ 2 };
  int array1[]{ 1, 2, 3, 4, 5 };
  int array2[5]{ 0 };
  fyd p{ 1, 2 };
 
  // C++11中列表初始化也可以适用于new表达式中
  int* pa = new int[4]{ 0 };
 
  return 0;
}

创建对象时也可以使用列表初始化方式调用构造函数初始化

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
using namespace std;
 
class Date
{
public:
  Date(int year, int month, int day)
    :_year(year)
    , _month(month)
    , _day(day)
  {
    cout << "Date(int year, int month, int day)" << endl;
  }
 
private:
  int _year;
  int _month;
  int _day;
};
 
int main()
{
  Date d1(2024, 4, 1);
 
  // C++11支持的列表初始化,这里会调用构造函数初始化
  Date d2{ 2024, 4, 2 };
  Date d3 = { 2024, 4, 3 };
 
  return 0;
}

2.2 -> std::initializer_list

std::initializer_list的介绍文档

std::initializer_list是什么类型:

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
using namespace std;
 
int main()
{
  auto il = { 10, 20, 30 };
 
  cout << typeid(il).name() << endl;
 
  return 0;
}

std::initializer_list使用场景:


std::initializer_list一般是作为构造函数的参数,C++11对STL中的不少容器就增加

std::initializer_list作为参数的构造函数,这样初始化容器对象就更方便了。也可以作为operator=

的参数,这样就可以用大括号赋值。list

vector

map

operator=

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
#include <vector>
#include <map>
#include <list>
using namespace std;
 
int main()
{
  vector<int> v = { 1,2,3,4 };
  list<int> lt = { 1,2 };
 
  // 这里{"sort", "排序"}会先初始化构造一个pair对象
  map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
 
  // 使用大括号对容器赋值
  v = { 10, 20, 30 };
 
  return 0;
}

让模拟实现的vector也支持{}初始化和赋值

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
#include <vector>
#include <map>
#include <list>
using namespace std;
 
namespace fyd
{
  template<class T>
  class vector 
  {
  public:
    typedef T* iterator;
    vector(initializer_list<T> l)
    {
      _start = new T[l.size()];
      _finish = _start + l.size();
      _endofstorage = _start + l.size();
      iterator vit = _start;
 
      typename initializer_list<T>::iterator lit = l.begin();
      while (lit != l.end())
      {
        *vit++ = *lit++;
      }
      //for (auto e : l)
      //   *vit++ = e;
    }
 
    vector<T>& operator=(initializer_list<T> l) 
    {
      vector<T> tmp(l);
 
      std::swap(_start, tmp._start);
      std::swap(_finish, tmp._finish);
      std::swap(_endofstorage, tmp._endofstorage);
 
      return *this;
    }
 
  private:
    iterator _start;
    iterator _finish;
    iterator _endofstorage;
  };
}

3 -> 声明

C++11提供了多种简化声明的方式,尤其是在使用模板时。

3.1 -> auto

在C++98中auto是一个存储类型的说明符,表明变量是局部自动存储类型,但是局部域中定义局部的变量默认就是自动存储类型,所以auto就没什么价值了。C++11中废弃auto原来的用法,将
其用于实现自动类型腿断。这样要求必须进行显示初始化,让编译器将定义对象的类型设置为初
始化值的类型。

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
#include <vector>
#include <map>
#include <list>
using namespace std;
 
int main()
{
  int i = 10;
  auto p = &i;
  auto pf = strcpy;
 
  cout << typeid(p).name() << endl;
  cout << typeid(pf).name() << endl;
 
  map<string, string> dict = { {"sort", "排序"}, {"insert", "插入"} };
 
  //map<string, string>::iterator it = dict.begin();
  auto it = dict.begin();
 
  return 0;
}

3.2 -> decltype

关键字decltype将变量的类型声明为表达式指定的类型。

#define  _CRT_SECURE_NO_WARNINGS 1
 
#include <iostream>
#include <vector>
#include <map>
#include <list>
using namespace std;
 
// decltype的一些使用使用场景
template<class T1, class T2>
void F(T1 t1, T2 t2)
{
  decltype(t1 * t2) ret;
 
  cout << typeid(ret).name() << endl;
}
 
int main()
{
  const int x = 1;
  double y = 2.2;
  decltype(x * y) ret; // ret的类型是double
  decltype(&x) p;      // p的类型是int*
 
  cout << typeid(ret).name() << endl;
  cout << typeid(p).name() << endl;
 
  F(1, 'a');
 
  return 0;
}

3.3 -> nullptr

由于C++中NULL被定义成字面量0,这样就可能带来一些问题,因为0既能表示指针常量,又能表示整型常量。所以出于清晰和安全角度考虑,C++11中新增了nullptr,用于表示空指针。

#ifndef NULL

#ifdef __cplusplus

#define NULL   0

#else

#define NULL   ((void *)0)

#endif

#endif


感谢大佬们支持!!!

互三啦!!!

目录
打赏
0
0
0
0
20
分享
相关文章
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
深入浅出 C++ STL:解锁高效编程的秘密武器
C++ 标准模板库(STL)是现代 C++ 的核心部分之一,为开发者提供了丰富的预定义数据结构和算法,极大地提升了编程效率和代码的可读性。理解和掌握 STL 对于 C++ 开发者来说至关重要。以下是对 STL 的详细介绍,涵盖其基础知识、发展历史、核心组件、重要性和学习方法。
深入理解C++模板编程:从基础到进阶
在C++编程中,模板是实现泛型编程的关键工具。模板使得代码能够适用于不同的数据类型,极大地提升了代码复用性、灵活性和可维护性。本文将深入探讨模板编程的基础知识,包括函数模板和类模板的定义、使用、以及它们的实例化和匹配规则。
【实战指南】4步实现C++插件化编程,轻松实现功能定制与扩展
本文介绍了如何通过四步实现C++插件化编程,实现功能定制与扩展。主要内容包括引言、概述、需求分析、设计方案、详细设计、验证和总结。通过动态加载功能模块,实现软件的高度灵活性和可扩展性,支持快速定制和市场变化响应。具体步骤涉及配置文件构建、模块编译、动态库入口实现和主程序加载。验证部分展示了模块加载成功的日志和配置信息。总结中强调了插件化编程的优势及其在多个方面的应用。
691 70
【实战经验】17个C++编程常见错误及其解决方案
想必不少程序员都有类似的经历:辛苦敲完项目代码,内心满是对作品品质的自信,然而当静态扫描工具登场时,却揭示出诸多隐藏的警告问题。为了让自己的编程之路更加顺畅,也为了持续精进技艺,我想借此机会汇总分享那些常被我们无意间忽视却又导致警告的编程小细节,以此作为对未来的自我警示和提升。
699 14
【C++篇】继承之韵:解构编程奥义,领略面向对象的至高法则
【C++篇】继承之韵:解构编程奥义,领略面向对象的至高法则
115 11
C++入门6——模板(泛型编程、函数模板、类模板)
C++入门6——模板(泛型编程、函数模板、类模板)
97 0
C++入门6——模板(泛型编程、函数模板、类模板)
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等