C++ STL中list迭代器的实现

简介: C++ STL中list迭代器的实现

list 的模拟实现中,重难点在于迭代器功能的实现,因此本文只围绕 iterator 及 const_iterator 的设计进行介绍,其余如增删查改则不再赘述——在C语言的基础上,这些都非常简单。


与 string / vector 不同,list 的节点原生指针不能通过简单的 ++ / * 等实现迭代器,因此我们需要对节点指针进行封装,利用自定义类型支持运算符重载的性质,完成迭代器的设计。


为了与 STL中list 进行区分,我们在创建的命名空间内实现。


一、iterator 的实现

(双向带头循环)链表及其节点的结构设计:

push_back():

void push_back(const T& x)
{
    Node* newnode = new Node(x);
    Node* tail = _head->prev;

    tail->_next = newnode;
    newnode->_prev = tail;
    _head->_prev = newnode;
    newnode->_next = _head;
}

我们很容易可以插入一组数据,但如果想遍历链表,同时对数据进行修改,则需要实现迭代器。

list 无法像 vector 一样简单地 ++/* 实现节点遍历,且原始指针也不支持对运算符重载,我们需要对 list节点的指针 进行封装

template<class T>
struct __list_iterator
{
    typedef ListNode<T> Node;
    Node* _node;// 被封装的节点指针
    
    // 迭代器的构造
    __list_iterator(Node* node)
      :_node(node)
  {}
};

struct __list_iterator
{
  typedef __list_iterator<T> self;  
    
    self operator++()
    {
        _node = _node->_next;
        return _node;
    }
    
    T& operator*()
    {
        return _node->_data;
    }
};

实际上,编译器优化后,会直接用 _node 对等式左边的变量进行构造。

以此类推,后置++ / 前后置-- / != / == 等都很容易了。

二、const_iterator 及第二个模板参数的引入

const_iterator 不能通过对 iterator 加 const 实现:


const_iterator 是为了防止 list 节点的数据被修改;iterator 加 const 会让迭代器本身无法++/–,导致 const list 无法实现遍历——迭代器不能++/–

const_iterator 本身的功能很简单——防止 list 节点的数据被修改,我们只需要针对性的修改 * 重载,其余与普通迭代器没有区别。

const T& operator*()
{
    return _node->_data;
}
// 普通迭代器 iterator:
// T& operator*() —— 能对节点的数据进行修改

即:

template<class T>
struct __list_const_iterator
{
    // ...
  const T& operator*()
    {
        return _node->_data;
    }
};

template<class T>
class list
{
    // ...
    typedef __list_const_iterator<T> const_iterator;
}

仅有一个函数不同,而其余部分都一样(与 iterator 相比),这种做法不是很好。

因此,我们引入第二个模板参数。

template<class T, class Ref>
struct __list_iterator
{
    // ...
  Ref operator*()
    {
        return _node->_data;
    }
}

template<class T, class Ref>
class list
{
  typedef __list_iterator<T, T&> iterator;
    typedef __list_iterator<T, const T&> const_iterator;
    // ...
}
  • 用一个例子测试 const迭代器:
namespace MyList
{
    void Print(const list<int>& lt)
    {
        for (auto& e : lt)
        {
            cout << e << " ";
        }
        cout << endl;
    }
    void test1()
    {
        list<int> lt;
        lt.push_back(10);
        lt.push_back(20);
        lt.push_back(30);
        lt.push_back(40);
        
        Print(lt);
    }
}

int main()
{
    test1();
    return 0;
}

三、箭头->重载

T* operator->()
{
    return &(_node->_data);
}


观察一下:it->_year ——> it.operator->()_year

此处 it.operator->() 的返回值是 Date* ,不应该写成 it->->_year 吗?

事实上,编译器在此处进行了优化,->-> 的写法反而错了

我们也可以引入第三个模板参数 Ptr ,这就就可以同时实现 T* 和 const T* 。

template<class T, class Ref, class Ptr>
struct __list_iterator
{
    typedef __list_iterator<T, Ref, Ptr> self;
    // ...
};

template<class T>
class list
{
    typedef __list_iterator<T, T&, T*> iterator;
    typedef __list_iterator<T, const T&, const T*> const_iterator;
    // ...
}
相关文章
|
7月前
|
编译器 C++ 容器
【c++丨STL】基于红黑树模拟实现set和map(附源码)
本文基于红黑树的实现,模拟了STL中的`set`和`map`容器。通过封装同一棵红黑树并进行适配修改,实现了两种容器的功能。主要步骤包括:1) 修改红黑树节点结构以支持不同数据类型;2) 使用仿函数适配键值比较逻辑;3) 实现双向迭代器支持遍历操作;4) 封装`insert`、`find`等接口,并为`map`实现`operator[]`。最终,通过测试代码验证了功能的正确性。此实现减少了代码冗余,展示了模板与仿函数的强大灵活性。
176 2
|
7月前
|
存储 算法 C++
【c++丨STL】map/multimap的使用
本文详细介绍了STL关联式容器中的`map`和`multimap`的使用方法。`map`基于红黑树实现,内部元素按键自动升序排列,存储键值对,支持通过键访问或修改值;而`multimap`允许存在重复键。文章从构造函数、迭代器、容量接口、元素访问接口、增删操作到其他操作接口全面解析了`map`的功能,并通过实例演示了如何用`map`统计字符串数组中各元素的出现次数。最后对比了`map`与`set`的区别,强调了`map`在处理键值关系时的优势。
344 73
|
8月前
|
存储 缓存 C++
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
|
7月前
|
存储 算法 C++
【c++丨STL】set/multiset的使用
本文深入解析了STL中的`set`和`multiset`容器,二者均为关联式容器,底层基于红黑树实现。`set`支持唯一性元素存储并自动排序,适用于高效查找场景;`multiset`允许重复元素。两者均具备O(logN)的插入、删除与查找复杂度。文章详细介绍了构造函数、迭代器、容量接口、增删操作(如`insert`、`erase`)、查找统计(如`find`、`count`)及`multiset`特有的区间操作(如`lower_bound`、`upper_bound`、`equal_range`)。最后预告了`map`容器的学习,其作为键值对存储的关联式容器,同样基于红黑树,具有高效操作特性。
282 3
|
8月前
|
算法 C++ 容器
模拟实现c++中的list模版
模拟实现c++中的list模版
|
8月前
|
存储 算法 C++
【c++丨STL】priority_queue(优先级队列)的使用与模拟实现
本文介绍了STL中的容器适配器`priority_queue`(优先级队列)。`priority_queue`根据严格的弱排序标准设计,确保其第一个元素始终是最大元素。它底层使用堆结构实现,支持大堆和小堆,默认为大堆。常用操作包括构造函数、`empty`、`size`、`top`、`push`、`pop`和`swap`等。我们还模拟实现了`priority_queue`,通过仿函数控制堆的类型,并调用封装容器的接口实现功能。最后,感谢大家的支持与关注。
376 1
|
9月前
|
C++ 容器
【c++丨STL】stack和queue的使用及模拟实现
本文介绍了STL中的两个重要容器适配器:栈(stack)和队列(queue)。容器适配器是在已有容器基础上添加新特性或功能的结构,如栈基于顺序表或链表限制操作实现。文章详细讲解了stack和queue的主要成员函数(empty、size、top/front/back、push/pop、swap),并提供了使用示例和模拟实现代码。通过这些内容,读者可以更好地理解这两种数据结构的工作原理及其实现方法。最后,作者鼓励读者点赞支持。 总结:本文深入浅出地讲解了STL中stack和queue的使用方法及其模拟实现,帮助读者掌握这两种容器适配器的特性和应用场景。
185 21
|
8月前
|
存储 算法 C++
深入浅出 C++ STL:解锁高效编程的秘密武器
C++ 标准模板库(STL)是现代 C++ 的核心部分之一,为开发者提供了丰富的预定义数据结构和算法,极大地提升了编程效率和代码的可读性。理解和掌握 STL 对于 C++ 开发者来说至关重要。以下是对 STL 的详细介绍,涵盖其基础知识、发展历史、核心组件、重要性和学习方法。
|
10月前
|
编译器 C语言 C++
【c++丨STL】list模拟实现(附源码)
本文介绍了如何模拟实现C++中的`list`容器。`list`底层采用双向带头循环链表结构,相较于`vector`和`string`更为复杂。文章首先回顾了`list`的基本结构和常用接口,然后详细讲解了节点、迭代器及容器的实现过程。 最终,通过这些步骤,我们成功模拟实现了`list`容器的功能。文章最后提供了完整的代码实现,并简要总结了实现过程中的关键点。 如果你对双向链表或`list`的底层实现感兴趣,建议先掌握相关基础知识后再阅读本文,以便更好地理解内容。
195 1
|
8月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。