【前端 - Vue】之 Keep-Alive缓存组件使用语法及原理解析,超详细!

简介: 【前端 - Vue】之 Keep-Alive缓存组件使用语法及原理解析,超详细!

一、Keep-alive 是什么

keep-alive是vue中的内置组件,能在组件切换过程中将状态保留在内存中,防止重复渲染DOM

keep-alive 包裹动态组件时,会缓存不活动的组件实例,而不是销毁它们

keep-alive可以设置以下props属性

  • include - 字符串或正则表达式。只有名称匹配的组件会被缓存
  • exclude - 字符串或正则表达式。任何名称匹配的组件都不会被缓存
  • max - 数字。最多可以缓存多少组件实例

关于keep-alive的基本用法:

<keep-alive>

 <component :is="view"></component>

</keep-alive>

使用includesexclude

<keep-alive include="a,b">

 <component :is="view"></component>

</keep-alive>

 

<!-- 正则表达式 (使用 `v-bind`) -->

<keep-alive :include="/a|b/">

 <component :is="view"></component>

</keep-alive>

 

<!-- 数组 (使用 `v-bind`) -->

<keep-alive :include="['a', 'b']">

 <component :is="view"></component>

</keep-alive>

匹配首先检查组件自身的 name 选项,如果 name 选项不可用,则匹配它的局部注册名称 (父组件 components 选项的键值),匿名组件不能被匹配

设置了 keep-alive 缓存的组件,会多出两个生命周期钩子(activateddeactivated):

  • 首次进入组件时:beforeRouteEnter > beforeCreate > created> mounted > activated > ... ... > beforeRouteLeave > deactivated
  • 再次进入组件时:beforeRouteEnter >activated > ... ... > beforeRouteLeave > deactivated

二、使用场景

使用原则:当我们在某些场景下不需要让页面重新加载时我们可以使用keepalive

举个栗子:

当我们从首页–>列表页–>商详页–>再返回,这时候列表页应该是需要keep-alive

从首页–>列表页–>商详页–>返回到列表页(需要缓存)–>返回到首页(需要缓存)–>再次进入列表页(不需要缓存),这时候可以按需来控制页面的keep-alive

在路由中设置keepAlive属性判断是否需要缓存

{
 path: 'list',
 name: 'itemList', // 列表页
 component (resolve) {
   require(['@/pages/item/list'], resolve)
},
meta: {
keepAlive: true,
 title: '列表页'
}
}

使用<keep-alive>

<div id="app" class='wrapper'>
   <keep-alive>
       <!-- 需要缓存的视图组件 -->
       <router-view v-if="$route.meta.keepAlive"></router-view>
    </keep-alive>
     <!-- 不需要缓存的视图组件 -->
    <router-view v-if="!$route.meta.keepAlive"></router-view>
</div>

三、原理分析

keep-alivevue中内置的一个组件

源码位置:src/core/components/keep-alive.js

export default {
  name: 'keep-alive',
  abstract: true,
 
  props: {
    include: [String, RegExp, Array],
    exclude: [String, RegExp, Array],
    max: [String, Number]
  },
 
  created () {
    this.cache = Object.create(null)
    this.keys = []
  },
 
  destroyed () {
    for (const key in this.cache) {
      pruneCacheEntry(this.cache, key, this.keys)
    }
  },
 
  mounted () {
    this.$watch('include', val => {
      pruneCache(this, name => matches(val, name))
    })
    this.$watch('exclude', val => {
      pruneCache(this, name => !matches(val, name))
    })
  },
 
  render() {
    /* 获取默认插槽中的第一个组件节点 */
    const slot = this.$slots.default
    const vnode = getFirstComponentChild(slot)
    /* 获取该组件节点的componentOptions */
    const componentOptions = vnode && vnode.componentOptions
 
    if (componentOptions) {
      /* 获取该组件节点的名称,优先获取组件的name字段,如果name不存在则获取组件的tag */
      const name = getComponentName(componentOptions)
 
      const { include, exclude } = this
      /* 如果name不在inlcude中或者存在于exlude中则表示不缓存,直接返回vnode */
      if (
        (include && (!name || !matches(include, name))) ||
        // excluded
        (exclude && name && matches(exclude, name))
      ) {
        return vnode
      }
 
      const { cache, keys } = this
      /* 获取组件的key值 */
      const key = vnode.key == null
        // same constructor may get registered as different local components
        // so cid alone is not enough (#3269)
        ? componentOptions.Ctor.cid + (componentOptions.tag ? `::${componentOptions.tag}` : '')
        : vnode.key
     /*  拿到key值后去this.cache对象中去寻找是否有该值,如果有则表示该组件有缓存,即命中缓存 */
      if (cache[key]) {
        vnode.componentInstance = cache[key].componentInstance
        // make current key freshest
        remove(keys, key)
        keys.push(key)
      }
        /* 如果没有命中缓存,则将其设置进缓存 */
        else {
        cache[key] = vnode
        keys.push(key)
        // prune oldest entry
        /* 如果配置了max并且缓存的长度超过了this.max,则从缓存中删除第一个 */
        if (this.max && keys.length > parseInt(this.max)) {
          pruneCacheEntry(cache, keys[0], keys, this._vnode)
        }
      }
 
      vnode.data.keepAlive = true
    }
    return vnode || (slot && slot[0])
  }
}

可以看到该组件没有template,而是用了render,在组件渲染的时候会自动执行render函数

this.cache是一个对象,用来存储需要缓存的组件,它将以如下形式存储:

this.cache = {

   'key1':'组件1',

   'key2':'组件2',

   // ...

}

在组件销毁的时候执行pruneCacheEntry函数

function pruneCacheEntry (

 cache: VNodeCache,

 key: string,

 keys: Array<string>,

 current?: VNode

) {

 const cached = cache[key]

 /* 判断当前没有处于被渲染状态的组件,将其销毁*/

 if (cached && (!current || cached.tag !== current.tag)) {

   cached.componentInstance.$destroy()

 }

 cache[key] = null

 remove(keys, key)

}

mounted钩子函数中观测 includeexclude 的变化,如下:

mounted () {

   this.$watch('include', val => {

       pruneCache(this, name => matches(val, name))

   })

   this.$watch('exclude', val => {

       pruneCache(this, name => !matches(val, name))

   })

}

如果includeexclude 发生了变化,即表示定义需要缓存的组件的规则或者不需要缓存的组件的规则发生了变化,那么就执行pruneCache函数,函数如下:

1. function pruneCache (keepAliveInstance, filter) {
2.   const { cache, keys, _vnode } = keepAliveInstance
3. for (const key in cache) {
4.     const cachedNode = cache[key]
5. if (cachedNode) {
6.       const name = getComponentName(cachedNode.componentOptions)
7. if (name && !filter(name)) {
8.         pruneCacheEntry(cache, key, keys, _vnode)
9.       }
10.     }
11.   }
12. }

在该函数内对this.cache对象进行遍历,取出每一项的name值,用其与新的缓存规则进行匹配,如果匹配不上,则表示在新的缓存规则下该组件已经不需要被缓存,则调用pruneCacheEntry函数将其从this.cache对象剔除即可

关于keep-alive的最强大缓存功能是在render函数中实现

首先获取组件的key值:

const key = vnode.key == null?

componentOptions.Ctor.cid + (componentOptions.tag ? `::${componentOptions.tag}` : '')

: vnode.key

拿到key值后去this.cache对象中去寻找是否有该值,如果有则表示该组件有缓存,即命中缓存,如下:

/* 如果命中缓存,则直接从缓存中拿 vnode 的组件实例 */

if (cache[key]) {

   vnode.componentInstance = cache[key].componentInstance

   /* 调整该组件key的顺序,将其从原来的地方删掉并重新放在最后一个 */

   remove(keys, key)

   keys.push(key)

}

直接从缓存中拿 vnode 的组件实例,此时重新调整该组件key的顺序,将其从原来的地方删掉并重新放在this.keys中最后一个

this.cache对象中没有该key值的情况,如下:

/* 如果没有命中缓存,则将其设置进缓存 */

else {

   cache[key] = vnode

   keys.push(key)

   /* 如果配置了max并且缓存的长度超过了this.max,则从缓存中删除第一个 */

   if (this.max && keys.length > parseInt(this.max)) {

       pruneCacheEntry(cache, keys[0], keys, this._vnode)

   }

}

表明该组件还没有被缓存过,则以该组件的key为键,组件vnode为值,将其存入this.cache中,并且把key存入this.keys

此时再判断this.keys中缓存组件的数量是否超过了设置的最大缓存数量值this.max,如果超过了,则把第一个缓存组件删掉

四、缓存后如何获取数据

解决方案可以有以下两种:

  • beforeRouteEnter
  • actived

beforeRouteEnter

每次组件渲染的时候,都会执行beforeRouteEnter

beforeRouteEnter(to, from, next){
   next(vm=>{
       console.log(vm)
       // 每次进入路由执行
       vm.getData()  // 获取数据
   })
},

actived

keep-alive缓存的组件被激活的时候,都会执行actived钩子

activated(){

  this.getData() // 获取数据

},

注意:服务器端渲染期间avtived不被调用

相关文章
|
12月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
10月前
|
存储 前端开发 JavaScript
调用DeepSeek API增强版纯前端实现方案,支持文件上传和内容解析功能
本方案基于DeepSeek API增强版,提供纯前端实现的文件上传与内容解析功能。通过HTML和JavaScript,用户可选择文件并调用API完成上传及解析操作。方案支持多种文件格式(如PDF、TXT、DOCX),具备简化架构、提高响应速度和增强安全性等优势。示例代码展示了文件上传、内容解析及结果展示的完整流程,适合快速构建高效Web应用。开发者可根据需求扩展功能,满足多样化场景要求。
3161 64
|
11月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
752 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
11月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
1385 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
11月前
|
传感器 人工智能 监控
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
903 2
|
11月前
|
设计模式 SQL Java
【再谈设计模式】解释器模式~语法的解析执行者
解释器模式定义了一种语言的语法表示,并定义一个解释器来解释该语言中的句子。它使用类来表示每个语法规则,并且通过递归调用这些类的方法来解释表达式。本质上,它将一个复杂的表达式分解为一系列简单的部分,然后按照特定的语法规则进行解析和执行。
309 8
|
12月前
|
开发框架 监控 JavaScript
解锁鸿蒙装饰器:应用、原理与优势全解析
ArkTS提供了多维度的状态管理机制。在UI开发框架中,与UI相关联的数据可以在组件内使用,也可以在不同组件层级间传递,比如父子组件之间、爷孙组件之间,还可以在应用全局范围内传递或跨设备传递。
394 2
|
11月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
1239 14
|
JavaScript 前端开发 程序员
前端学习笔记——node.js
前端学习笔记——node.js
451 0

推荐镜像

更多
  • DNS