大数据另一个方向——大数据变成“小数据”

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据有两个发展方向。一个是方向大家比较熟悉的“数据收集、分析”,借此了解客户需求、明确产品方向等等。我还在人工智能、机器学习等领域做了一些研究,思考怎样把这些先进的技术和数据技术综合在一起,让大数据不仅能帮人做决策,而且能够真正自己做一些简单决策,让人有时间和精力去做更复杂的决定。

另外一个方向是“数据即服务”。亚马逊的AWS云计算是“基础设施即服务”,Salesforce是“软件即服务”。Splunk是做大数据的管理平台,我想如果能把这个平台做得更进一步,也是一个很好的方向,把大数据变成“小数据”。

大数据概念有3v,数据量很大(volume)、数据速度很快(velocity)、数据种类多(variety)。小数据就是说,点点滴滴的数据都很重要,比如人的心跳,虽然数据不大,但对健康很重要。

大小数据的概念不重要,重要的是什么样的数据给我们带来最大的价值,怎么把这个价值体现出来。比如,本来房子是不会讲话的,但屋里的人知道它的温度是多少、气流怎么流。在这些东西数字化之前,我们只能走进屋内去亲自感觉,但数字化可以帮我们把各项情况呈现出来。从这个角度讲,数据的应用让我们看到了很多原来看不到的东西。

再举个例子:一个客户每天乘电梯时,会在哪个楼层停多长时间、进出多少次,这些数据放在我们的平台分析之后,便可以预测电梯停留次数最多那层的客户肯定会续约,而电梯停留最少的那一层不会续约。数据让电梯“开口讲话”,这是一种特别好的“新型语言”。

我们要关心小数据,不是说只有建立一个大的数据中心,才能让数据实现价值。其实,像电梯这样的数据可能不是很多,但能“讲”的故事非常有价值。我们生活的时代是个数据科学和物联网的时代,数据是一个新的能源,怎么开发好数据是最重要的事情。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
12天前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
48 1
|
1月前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
48 3
|
6天前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
16 3
|
6天前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
23 2
|
9天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
36 2
|
11天前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
39 2
|
13天前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。
|
17天前
|
SQL 存储 大数据
大数据中数据提取
【10月更文挑战第19天】
40 2
|
1月前
|
SQL 消息中间件 大数据
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
45 1