【C++】:模板初阶和STL简介

简介: 【C++】:模板初阶和STL简介

一,泛型编程

在C语言中如何实现一个通用的交换函数呢?

void Swap(int& left, int& right)
{
 int temp = left;
 left = right;
 right = temp;
}
 
void Swap(double& left, double& right)
{
 double temp = left;
 left = right;
 right = temp;
}

使用函数重载虽然可以实现,但是有一下几个不好的地方:

1.重载的函数仅仅是类型不同,代码复用率比较低,只要有新类型出现时,就需要用户自己增加对应的函数。

2.代码的可维护性比较低,一个出错可能所有的重载均出错。

那能否告诉编译器一个模子,让编译器根据不同的类型利用该模子来生成代码呢?

泛型编程:编写与类型无关的通用代码,是代码复用的一种手段。模板是泛型编程的基础

二,函数模板

2.1 函数模板概念

函数模板代表了一个函数家族,该函数模板与类型无关,在使用时被参数化,根据实参类型产生函数的特定类型版本。

2.2 函数模板格式

template<typename T1, typename T2,......,typename Tn>
返回值类型 函数名(参数列表){}

使用方法如下:

template<typename T> //template<class T>
void Swap( T& left, T& right)
{
 T temp = left;
 left = right;
 right = temp;
}

注意:

  • typename是用来定义模板参数关键字,也可以使用class(切记:不能使用struct代替class)

2.3 函数模板的原理

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器

编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供

调用。

2.4 函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化显式实例化

1.隐式实例化:让编译器根据实参推演模板参数的实际类型。

template<class T>
T Add(const T& left, const T& right)
{
     return left + right;
}
 
int main()
{
   int a1 = 10, a2 = 20;
   double d1 = 10.0, d2 = 20.0;
   
   //隐式实例化
   Add(a1, a2);
   Add(d1, d2);
  
   Add(a1, d2);//err 推演失败
   // 此时有两种处理方式:
  //1. 用户自己来强制转化 
  //2. 使用显式实例化
  Add(a1, (int)d2);//OK
   
   return 0;
 }

2.显式实例化:在函数名后的<>中指定模板参数的实际类型。

int main()
{
   int a = 10;
   double b = 20.0;
   
   // 显式实例化
   Add<int>(a, b);
   
   return 0;
}

2.5 模板参数的匹配原则

1.一个非模板函数可以和一个同名的函数模板同时存在,而且该函数模板还可以被实例化为这个非模板函数。

// 专门处理int的加法函数
int Add(int left, int right)
{
    return left + right;
}
 
// 通用加法函数
template<class T>
T Add(T left, T right)
{
    return left + right;
}
 
void Test()
{
   Add(1, 2); // 与非模板函数匹配,编译器不需要特化
   Add<int>(1, 2); // 调用编译器特化的Add版本
}

2.对于非模板函数和同名函数模板,如果其他条件都相同,在调动时会优先调用非模板函数而不会从该模板产生出一个实例。如果模板可以产生一个具有更好匹配的函数, 那么将选择模板。

// 专门处理int的加法函数
int Add(int left, int right)
{
    return left + right;
}
// 通用加法函数
template<class T1, class T2>
T1 Add(T1 left, T2 right)
{
 return left + right;
}
 
void Test()
{
    Add(1, 2); // 与非函数模板类型完全匹配,不需要函数模板实例化
    Add(1, 2.0); // 模板函数可以生成更加匹配的版本,编译器根据实参生成更加匹配的Add函数
}

三,类模板

3.1 类模板的定义格式

template<class T1, class T2, ..., class Tn> 
class 类模板名
{
 // 类内成员定义
};

下面拿顺序表来举例:

// 动态顺序表
// 注意:Vector不是具体的类,是编译器根据被实例化的类型生成具体类的模具
template<class T>
class Vector
{
public:
  Vector(size_t capacity = 10)
    : _pData(new T[capacity])
    , _size(0)
    , _capacity(capacity)
  {}
  // 使用析构函数演示:在类中声明,在类外定义。
  ~Vector();
  void PushBack(const T& data);
  void PopBack();
  // ...
  size_t Size() { return _size; }
  T& operator[](size_t pos)
  {
    assert(pos < _size);
    return _pData[pos];
  }
private:
  T* _pData;
  size_t _size;
  size_t _capacity;
};
// 注意:类模板中函数放在类外进行定义时,需要加模板参数列表
template <class T>
Vector<T>::~Vector()
{
  if (_pData)
    delete[] _pData;
  _size = _capacity = 0;
}

3.2 类模板的实例化

类模板实例化与函数模板实例化不同,类模板实例化需要在类模板名字后跟<>,然后将实例化的类型放在<>中即可,类模板名字不是真正的类,而实例化的结果才是真正的类

// Vector类名,Vector<int>才是类型
 Vector<int> s1;
 Vector<double> s2;

四,STL简介(了解)

4.1 什么是STL

STL(standard template libaray-标准模板库):是C++标准库的重要组成部分,不仅是一个可复用的组件库,而且是一个包罗数据结构与算法的软件框架。

4.2 STL的版本

  • 原始版本
    Alexander Stepanov、Meng Lee 在惠普实验室完成的原始版本,本着开源精神,他们声明允许任何人任意运用、拷贝、修改、传播、商业使用这些代码,无需付费。唯一的条件就是也需要向原始版本一样做开源使用。 HP 版本–所有STL实现版本的始祖。
  • P. J. 版本
    由P. J. Plauger开发,继承自HP版本,被Windows Visual C++采用,不能公开或修改,缺陷:可读性比较低,符号命名比较怪异。
  • RW版本
    由Rouge Wage公司开发,继承自HP版本,被C+ + Builder 采用,不能公开或修改,可读性一般。
  • SGI版本
    由Silicon Graphics Computer Systems,Inc公司开发,继承自HP版 本。被GCC(Linux)采用,可移植性好,可公开、修改甚至贩卖,从命名风格和编程 风格上看,阅读性非常高。我们后面学习STL要阅读部分源代码,主要参考的就是这个版本。

4.3 STL的六大组件

目录
打赏
0
0
0
0
7
分享
相关文章
【c++丨STL】基于红黑树模拟实现set和map(附源码)
本文基于红黑树的实现,模拟了STL中的`set`和`map`容器。通过封装同一棵红黑树并进行适配修改,实现了两种容器的功能。主要步骤包括:1) 修改红黑树节点结构以支持不同数据类型;2) 使用仿函数适配键值比较逻辑;3) 实现双向迭代器支持遍历操作;4) 封装`insert`、`find`等接口,并为`map`实现`operator[]`。最终,通过测试代码验证了功能的正确性。此实现减少了代码冗余,展示了模板与仿函数的强大灵活性。
67 2
【c++丨STL】map/multimap的使用
本文详细介绍了STL关联式容器中的`map`和`multimap`的使用方法。`map`基于红黑树实现,内部元素按键自动升序排列,存储键值对,支持通过键访问或修改值;而`multimap`允许存在重复键。文章从构造函数、迭代器、容量接口、元素访问接口、增删操作到其他操作接口全面解析了`map`的功能,并通过实例演示了如何用`map`统计字符串数组中各元素的出现次数。最后对比了`map`与`set`的区别,强调了`map`在处理键值关系时的优势。
152 73
模板(C++)
本内容主要讲解了C++中的函数模板与类模板。函数模板是一个与类型无关的函数家族,使用时根据实参类型生成特定版本,其定义可用`typename`或`class`作为关键字。函数模板实例化分为隐式和显式,前者由编译器推导类型,后者手动指定类型。同时,非模板函数优先于同名模板函数调用,且模板函数不支持自动类型转换。类模板则通过在类名后加`&lt;&gt;`指定类型实例化,生成具体类。最后,语录鼓励大家继续努力,技术不断进步!
【c++丨STL】set/multiset的使用
本文深入解析了STL中的`set`和`multiset`容器,二者均为关联式容器,底层基于红黑树实现。`set`支持唯一性元素存储并自动排序,适用于高效查找场景;`multiset`允许重复元素。两者均具备O(logN)的插入、删除与查找复杂度。文章详细介绍了构造函数、迭代器、容量接口、增删操作(如`insert`、`erase`)、查找统计(如`find`、`count`)及`multiset`特有的区间操作(如`lower_bound`、`upper_bound`、`equal_range`)。最后预告了`map`容器的学习,其作为键值对存储的关联式容器,同样基于红黑树,具有高效操作特性。
80 3
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
C++ 标准模板库(STL)提供了一组功能强大的容器类,用于存储和操作数据集合。不同的容器具有独特的特性和应用场景,因此选择合适的容器对于程序的性能和代码的可读性至关重要。对于刚接触 C++ 的开发者来说,了解这些容器的基础知识以及它们的特点是迈向高效编程的重要一步。本文将详细介绍 C++ 常用的容器,包括序列容器(`std::vector`、`std::array`、`std::list`、`std::deque`)、关联容器(`std::set`、`std::map`)和无序容器(`std::unordered_set`、`std::unordered_map`),全面解析它们的特点、用法
C++ 容器全面剖析:掌握 STL 的奥秘,从入门到高效编程
【c++丨STL】priority_queue(优先级队列)的使用与模拟实现
本文介绍了STL中的容器适配器`priority_queue`(优先级队列)。`priority_queue`根据严格的弱排序标准设计,确保其第一个元素始终是最大元素。它底层使用堆结构实现,支持大堆和小堆,默认为大堆。常用操作包括构造函数、`empty`、`size`、`top`、`push`、`pop`和`swap`等。我们还模拟实现了`priority_queue`,通过仿函数控制堆的类型,并调用封装容器的接口实现功能。最后,感谢大家的支持与关注。
119 1
|
2月前
|
【c++】模板详解(2)
本文深入探讨了C++模板的高级特性,包括非类型模板参数、模板特化和模板分离编译。通过具体代码示例,详细讲解了非类型参数的应用场景及其限制,函数模板和类模板的特化方式,以及分离编译时可能出现的链接错误及解决方案。最后总结了模板的优点如提高代码复用性和类型安全,以及缺点如增加编译时间和代码复杂度。通过本文的学习,读者可以进一步加深对C++模板的理解并灵活应用于实际编程中。
43 0
深入浅出 C++ STL:解锁高效编程的秘密武器
C++ 标准模板库(STL)是现代 C++ 的核心部分之一,为开发者提供了丰富的预定义数据结构和算法,极大地提升了编程效率和代码的可读性。理解和掌握 STL 对于 C++ 开发者来说至关重要。以下是对 STL 的详细介绍,涵盖其基础知识、发展历史、核心组件、重要性和学习方法。
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
41 12

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等