【球类识别系统】图像识别Python+卷积神经网络算法+人工智能+深度学习+TensorFlow

简介: 球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 '美式足球', '棒球', '篮球', '台球', '保龄球', '板球', '足球', '高尔夫球', '曲棍球', '冰球', '橄榄球', '羽毛球', '乒乓球', '网球', '排球'等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。

一、介绍

球类识别系统,本系统使用Python作为主要编程语言,基于TensorFlow搭建ResNet50卷积神经网络算法模型,通过收集 '美式足球', '棒球', '篮球', '台球', '保龄球', '板球', '足球', '高尔夫球', '曲棍球', '冰球', '橄榄球', '羽毛球', '乒乓球', '网球', '排球'等15种常见的球类图像作为数据集,然后进行训练,最终得到一个识别精度较高的模型文件。再使用Django开发Web网页端可视化界面平台,实现用户上传一张球类图片识别其名称。

二、系统效果图片展示

img_06_22_15_30_11

img_06_22_15_31_16

img_06_22_15_31_32

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/ocsfgr1rg9b2bs2w

四、ResNet50算法介绍

ResNet50是一种深度卷积神经网络(CNN),专为图像识别和分类任务设计。它是ResNet网络家族的一员,其中“ResNet”代表残差网络。这种网络的主要特点是它能够通过使用所谓的“残差块”来训练极深的神经网络,而不会出现梯度消失或爆炸的问题。每个残差块包括跳跃连接,允许输入直接跳过一些层。这些连接帮助网络学习恒等映射,保证了网络在增加深度的同时,性能不会下降。
卷积神经网络(CNN)是一类特别适用于处理具有明显层次或空间结构的数据(如图像)的深度学习模型。CNN通过使用卷积层来自动和有效地捕捉图像中的空间和时间依赖性,无需手动特征工程。每个卷积层通过滤波器对图像执行操作,这些滤波器能够捕捉图像的局部依赖性和重要特征。
在图像识别应用中,ResNet50和其他CNN模型通常需要大量标记数据来训练。一旦训练完成,这些模型可以用于新图像的分类,物体检测,甚至场景理解。ResNet50因其深度和效率,在处理复杂图像任务时表现出色,尤其是在需要识别或分类大量对象类别的场景中。
下面是一个使用Python和Keras框架加载预训练的ResNet50模型,并用它来预测输入图像类别的示例代码:

from keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
from keras.preprocessing import image
import numpy as np

# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')

# 加载一张图片,调整大小到224x224
img_path = 'your_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))

# 将图片转换成模型可读的格式
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)

# 使用ResNet50进行预测
predictions = model.predict(x)

# 输出预测结果
print('Predicted:', decode_predictions(predictions, top=3)[0])

这段代码演示了如何利用深度学习和具体的网络架构来实现高效的图像识别。

目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深入神经网络:从感知机到深度学习
【7月更文第17天】当我们谈论人工智能时,神经网络常常是那个闪亮的明星。从最初的简单模型——感知机,到当今复杂而强大的深度学习系统,这场技术革命正以前所未有的方式改变着我们的世界。今天,咱们就用通俗易懂的语言,搭配一些简单的代码示例,来一场《深入神经网络:从感知机到深度学习》的探索之旅。
24 8
|
10天前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:深度学习与神经网络的融合
【7月更文挑战第11天】随着科技的不断进步,人工智能(AI)领域正迎来前所未有的发展机遇。本文将深入探讨深度学习和神经网络这两大技术如何相互融合,共同推动AI的未来走向。我们将从基础概念出发,逐步解析它们在实际应用中的协同效应,并预测未来可能的发展趋势。
|
14天前
|
机器学习/深度学习 数据采集 监控
Python基于BP神经网络算法实现家用热水器用户行为分析与事件识别
Python基于BP神经网络算法实现家用热水器用户行为分析与事件识别
|
13天前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
10 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
2天前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
|
13天前
|
机器学习/深度学习 数据采集 算法
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
Python实现人工神经网络回归模型(MLPRegressor算法)并基于网格搜索(GridSearchCV)进行优化项目实战
|
14天前
|
机器学习/深度学习 算法 数据可视化
Python基于librosa和人工神经网络实现语音识别分类模型(ANN算法)项目实战
Python基于librosa和人工神经网络实现语音识别分类模型(ANN算法)项目实战
|
15天前
|
机器学习/深度学习 自然语言处理 算法
「AIGC算法」深度神经网络
**深度神经网络(DNNs)**是多层人工神经网络,用于图像识别、语音识别和自然语言处理等。它们通过输入层、隐藏层和输出层学习数据的复杂模式。工作流程涉及前向传播、激活函数(如ReLU)、权重更新(通过反向传播)和损失函数优化。应用广泛,包括图像和语音识别、推荐系统和医学分析。例如,用TensorFlow和Keras构建的DNN可识别MNIST手写数字。Python在数据分析、自动化、网络爬虫、文件管理和机器学习等任务中也发挥着关键作用。
21 0
|
18天前
|
机器学习/深度学习 人工智能 计算机视觉
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城
好的资源-----打卡机+Arm+Qt+OpenCV嵌入式项目-基于人脸识别的考勤系统-----B站神经网络与深度学习,商城