使用seq2seq架构实现英译法(一)

简介: **Seq2Seq模型简介**Seq2Seq(Sequence-to-Sequence)模型是自然语言处理中的关键架构,尤其适用于机器翻译、聊天机器人和自动文摘等任务。它由编码器和解码器组成,其中编码器将输入序列转换为固定长度的上下文向量,而解码器则依据该向量生成输出序列。模型能够处理不同长度的输入和输出序列,适应性强。

seq2seq介绍


模型架构:



Seq2Seq(Sequence-to-Sequence)模型是一种在自然语言处理(NLP)中广泛应用的架构,其核心思想是将一个序列作为输入,并输出另一个序列。这种模型特别适用于机器翻译、聊天机器人、自动文摘等场景,其中输入和输出的长度都是可变的。


  • embedding层在seq2seq模型中起着将离散单词转换为连续向量表示的关键作用,为后续的自然语言处理任务提供了有效的特征输入。


数据集

下载: https://download.pytorch.org/tutorial/data.zip


🍸️步骤:


基于GRU的seq2seq模型架构实现翻译的过程:


  • 导入必备的工具包.
  • 对文件中数据进行处理,满足模型训练要求.
  • 构建基于GRU的编码器和解码
  • 构建模型训练函数,并进行训练
  • 构建模型评估函数,并进行测试以及Attention效果分析



# 从io工具包导入open方法
from io import open
# 用于字符规范化
import unicodedata
# 用于正则表达式
import re
# 用于随机生成数据
import random
# 用于构建网络结构和函数的torch工具包
import torch
import torch.nn as nn
import torch.nn.functional as F
# torch中预定义的优化方法工具包
from torch import optim
# 设备选择, 我们可以选择在cuda或者cpu上运行你的代码
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


数据预处理



将指定语言中的词汇映射成数值💫

# 起始标志
SOS_token = 0
# 结束标志
EOS_token = 1
 
class Lang:
    def __init__(self, name):
        self.name = name
        self.word2index = {}
        self.index2word = {0: "SOS", 1: "EOS"}
        self.n_words = 2  
 
    def addSentence(self, sentence):
        for word in sentence.split(' '):
            self.addWord(word)
 
 
    def addWord(self, word):
      
        if word not in self.word2index:
            self.word2index[word] = self.n_words
            self.index2word[self.n_words] = words
            self.n_words += 1


  • 测试:实例化参数:


name = "eng"
sentence = "hello I am Jay"
 
engl = Lang(name)
engl.addSentence(sentence)
print("word2index:", engl.word2index)
print("index2word:", engl.index2word)
print("n_words:", engl.n_words)
 
# 输出
word2index: {'hello': 2, 'I': 3, 'am': 4, 'Jay': 5}
index2word: {0: 'SOS', 1: 'EOS', 2: 'hello', 3: 'I', 4: 'am', 5: 'Jay'}
n_words: 6


字符规范化💫


 
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )
 
 
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    return s


将文件中的数据加载到内存,实例化类Lang💫


data_path = 'eng-fra.txt'
 
def readLangs(lang1, lang2):
    """读取语言函数, 参数lang1是源语言的名字, 参数lang2是目标语言的名字
       返回对应的class Lang对象, 以及语言对列表"""
    # 从文件中读取语言对并以/n划分存到列表lines中
    lines = open(data_path, encoding='utf-8').read().strip().split('\n')
    # 对lines列表中的句子进行标准化处理,并以\t进行再次划分, 形成子列表, 也就是语言对
    pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] 
    # 然后分别将语言名字传入Lang类中, 获得对应的语言对象, 返回结果
    input_lang = Lang(lang1)
    output_lang = Lang(lang2)
    return input_lang, output_lang, pairs


  • 测试:输入参数:


lang1 = "eng"
lang2 = "fra"
 
input_lang, output_lang, pairs = readLangs(lang1, lang2)
print("pairs中的前五个:", pairs[:5])
 
# 输出
pairs中的前五个: [['go .', 'va !'], ['run !', 'cours !'], ['run !', 'courez !'], ['wow !', 'ca alors !'], ['fire !', 'au feu !']]


过滤出符合我们要求的语言对💫


# 设置组成句子中单词或标点的最多个数
MAX_LENGTH = 10
 
eng_prefixes = (
    "i am ", "i m ",
    "he is", "he s ",
    "she is", "she s ",
    "you are", "you re ",
    "we are", "we re ",
    "they are", "they re "
)
 
 
def filterPair(p):
    return len(p[0].split(' ')) < MAX_LENGTH and \
        p[0].startswith(eng_prefixes) and \
        len(p[1].split(' ')) < MAX_LENGTH 
 
 
def filterPairs(pairs):
    return [pair for pair in pairs if filterPair(pair)]


对以上数据准备函数进行整合💫


def prepareData(lang1, lang2):
 
    input_lang, output_lang, pairs = readLangs(lang1, lang2)
 
    pairs = filterPairs(pairs)
    for pair in pairs:
        input_lang.addSentence(pair[0])
        output_lang.addSentence(pair[1])
    return input_lang, output_lang, pairs


将语言对转化为模型输入需要的张量💫


def tensorFromSentence(lang, sentence):
    indexes = [lang.word2index[word] for word in sentence.split(' ')]
 
    indexes.append(EOS_token)
    return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
 
 
def tensorsFromPair(pair):
 
    input_tensor = tensorFromSentence(input_lang, pair[0])
    target_tensor = tensorFromSentence(output_lang, pair[1])
    return (input_tensor, target_tensor)


  • 测试输入:


# 取pairs的第一条
pair = pairs[0]
pair_tensor = tensorsFromPair(pair)
print(pair_tensor)
 
# 输出
(tensor([[2],
        [3],
        [4],
        [1]]), 
 tensor([[2],
        [3],
        [4],
        [5],
        [1]]))


使用seq2seq架构实现英译法(二)+https://developer.aliyun.com/article/1544784?spm=a2c6h.13148508.setting.28.22454f0eHFZZj3

相关文章
|
3月前
|
机器学习/深度学习 自然语言处理
使用seq2seq架构实现英译法(二)
**Seq2Seq模型简介** Seq2Seq(Sequence-to-Sequence)模型是自然语言处理中的关键架构,尤其适用于机器翻译、聊天机器人和自动文摘等任务。它由编码器和解码器组成,其中编码器将输入序列转换为固定长度的上下文向量,而解码器则依据该向量生成输出序列。模型能够处理不同长度的输入和输出序列,适应性强。
|
数据采集 编解码 人工智能
【计算机视觉】OFA:通过一个简单的seq2seq的学习框架来统一架构、任务和模态
追求多模态预训练的统一范式,以打破复杂任务/特定模态定制的框架。
|
3天前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
3天前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
30天前
|
Kubernetes Cloud Native Docker
云原生之旅:从容器到微服务的架构演变
【8月更文挑战第29天】在数字化时代的浪潮下,云原生技术以其灵活性、可扩展性和弹性管理成为企业数字化转型的关键。本文将通过浅显易懂的语言和生动的比喻,带领读者了解云原生的基本概念,探索容器化技术的奥秘,并深入微服务架构的世界。我们将一起见证代码如何转化为现实中的服务,实现快速迭代和高效部署。无论你是初学者还是有经验的开发者,这篇文章都会为你打开一扇通往云原生世界的大门。
|
5天前
|
JSON 监控 安全
探索微服务架构中的API网关模式
【9月更文挑战第22天】在微服务架构的海洋中,API网关如同一位智慧的守门人,不仅管理着服务的进出,还维护着整个系统的秩序。本文将带你一探究竟,看看这位守门人是如何工作的,以及它为何成为现代云原生应用不可或缺的一部分。从流量控制到安全防护,再到服务聚合,我们将一起解锁API网关的秘密。
|
15天前
|
运维 Cloud Native Devops
云原生架构的崛起与实践云原生架构是一种通过容器化、微服务和DevOps等技术手段,帮助应用系统实现敏捷部署、弹性扩展和高效运维的技术理念。本文将探讨云原生的概念、核心技术以及其在企业中的应用实践,揭示云原生如何成为现代软件开发和运营的主流方式。##
云原生架构是现代IT领域的一场革命,它依托于容器化、微服务和DevOps等核心技术,旨在解决传统架构在应对复杂业务需求时的不足。通过采用云原生方法,企业可以实现敏捷部署、弹性扩展和高效运维,从而大幅提升开发效率和系统可靠性。本文详细阐述了云原生的核心概念、主要技术和实际应用案例,并探讨了企业在实施云原生过程中的挑战与解决方案。无论是正在转型的传统企业,还是寻求创新的互联网企业,云原生都提供了一条实现高效能、高灵活性和高可靠性的技术路径。 ##
24 3
|
19天前
|
监控 负载均衡 应用服务中间件
探索微服务架构下的API网关设计与实践
在数字化浪潮中,微服务架构以其灵活性和可扩展性成为企业IT架构的宠儿。本文将深入浅出地介绍微服务架构下API网关的关键作用,探讨其设计原则与实践要点,旨在帮助读者更好地理解和应用API网关,优化微服务间的通信效率和安全性,实现服务的高可用性和伸缩性。
38 3
|
23天前
|
存储 Java Maven
从零到微服务专家:用Micronaut框架轻松构建未来架构
【9月更文挑战第5天】在现代软件开发中,微服务架构因提升应用的可伸缩性和灵活性而广受欢迎。Micronaut 是一个轻量级的 Java 框架,适合构建微服务。本文介绍如何从零开始使用 Micronaut 搭建微服务架构,包括设置开发环境、创建 Maven 项目并添加 Micronaut 依赖,编写主类启动应用,以及添加控制器处理 HTTP 请求。通过示例代码展示如何实现简单的 “Hello, World!” 功能,并介绍如何通过添加更多依赖来扩展应用功能,如数据访问、验证和安全性等。Micronaut 的强大和灵活性使你能够快速构建复杂的微服务系统。
55 5
|
2天前
|
Kubernetes Go Docker
掌握微服务架构:从Go到容器化的旅程
摘要,通常简短概述文章内容,要求精炼。在本文中,我们将打破常规,采用一种故事化叙述的摘要,旨在激发读者的好奇心和探究欲: “从宁静的海滨小城出发,我们踏上了一场技术探险之旅,探索微服务架构的奥秘。我们将学习如何用Go编写微服务,以及如何通过Docker和Kubernetes将它们打包进小巧的容器中。在这场旅程中,我们将遇到挑战、收获知识,最终实现应用的快速部署与可扩展性。”

热门文章

最新文章