AI-逻辑回归模型

简介: 逻辑回归是一种用于分类问题的统计模型,尤其适合二分类任务,如预测广告点击率、判断邮件是否为垃圾邮件、评估疾病风险和预测信用卡违约等。模型通过线性方程(logit函数)结合Sigmoid函数将结果映射到0到1区间,表示概率。损失函数通常使用交叉熵,优化时常用梯度下降。评估指标包括ROC曲线和AUC,后者衡量模型整体性能,值越接近1表示性能越好。在不平衡数据集上,可使用`class_weight='balanced'`来调整样本权重。

逻辑回归的应用场景


逻辑回归(Logistic Regression)是机器学习中的 一种分类模型 ,逻辑回归是一种分类算法,虽然名字中带有回归。由于算法的简单和高效,在实际中应用非常广泛☺️


  • 广告点击率,预测用户是否会点击某个广告,是典型的二分类问题。逻辑回归可以根据用户的特征(如年龄、性别、浏览历史等)来预测点击概率。
  • 是否为垃圾邮件,电子邮件服务提供商使用逻辑回归来判断邮件是否为垃圾邮件,根据邮件内容特征和发送者信息来进行分类。
  • 是否患病,在医疗领域,逻辑回归可以帮助预测患者是否有发病的风险,例如基于患者的各种生理指标来预测糖尿病或冠心病的风险。
  • 信用卡账单是否会违约,金融机构利用逻辑回归模型来评估信用卡用户是否存在违约风险,这通常涉及对用户的信用历史、交易行为等进行分析。


逻辑回归是一种用于分类问题的统计模型,特别是适合于处理二分类问题。


逻辑回归的输入🥰


逻辑回归模型的核心在于它使用了一个线性方程作为输入,这个线性方程通常称为logit函数。具体来说,逻辑回归模型首先通过一个线性方程对输入特征进行加权求和,然后使用Sigmoid函数将这个线性方程的结果映射到(0,1)区间内,从而得到一个概率值。这个过程可以用以下数学公式表示:


[ P(y=1|x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1x_1 + \ldots + \beta_nx_n)}} ]


激活函数


Sigmoid函数的数学表达式通常写为 ( sigma(x) = \frac{1}{1 + e^{-x}} ),其中 ( x ) 是输入变量。


回归的结果输入到sigmoid函数当中


逻辑回归的损失,称之为 对数似然损失


在逻辑回归中,损失函数是用来度量预测值与真实值之间的差异的。具体来说,逻辑回归通常使用的损失函数是交叉熵(Cross Entropy),这是一种衡量两个概率分布之间差异的函数。交叉熵损失函数可以写成以下形式:


[ L(y, p) = -frac{1}{N} \sum_{i=1}^{N} [y_i \log(p_i) + (1 - y_i) \log(1 - p_i)] ]


其中,( y_i ) 是样本的真实标签(0或1),( p_i ) 是模型预测该样本为正例的概率,N是样本数量。这个损失函数的目的是使得模型输出的概率尽可能接近真实标签。当模型预测的概率与真实标签一致时,损失函数的值会很小;反之,如果预测的概率与真实标签相差较大,则损失函数的值会比较大。


优化同样使用梯度下降优化算法,去减少损失函数的值。这样去更新逻辑回归前面对应算法的权重参数,提升原本属于1类别的概率,降低原本是0类别的概率。  


from sklearn.linear_model import SGDRegressor
 
# 创建SGDRegressor实例
estimator = SGDRegressor(max_iter=1000)
 
# 使用训练数据拟合模型
estimator.fit(x_train, y_train)


案例🤔


sklearn.linear_model.LogisticRegression(solver='liblinear', penalty=‘l2’, C = 1.0)


💎l2作为正则化项(惩罚项),以及C=1.0作为正则化强度的倒数。


import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
 
names = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape','Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli', 'Mitoses', 'Class']
 
data = pd.read_csv("wisconsin.data")
data.head()
 
 
x = data.iloc[:, 1:10]
x.head()
y = data["Class"]
y.head()
 
x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=22)
 
transfer = StandardScaler()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
 
estimator = LogisticRegression()
estimator.fit(x_train, y_train)
 
y_predict = estimator.predict(x_test)
y_predict
estimator.score(x_test, y_test)


分类评估指标


ROC曲线(Receiver Operating Characteristic Curve):ROC曲线描绘了不同阈值下的真正例率和假正例率,用于评估模型在不同阈值下的表现。在机器学习领域,ROC曲线和AUC指标广泛应用于模型选择和性能评估。



💎ROC曲线,全称为接收者操作特征曲线(Receiver Operating Characteristic Curve),是一种用于评估二分类模型性能的图形化工具。它以假正率(False Positive Rate, FPR)为横轴,真正率(True Positive Rate, TPR)为纵轴绘制而成。ROC曲线上每个点反映了在不同判定阈值下,模型对正类和负类样本分类的能力。通过观察ROC曲线,我们可以直观地了解分类器在不同阈值下的性能表现。


💎AUC(Area Under Curve)则是ROC曲线下的面积,用于量化地衡量模型的整体分类性能。AUC的取值范围在0.5到1之间,其中0.5表示模型没有区分能力,而1表示模型具有完美的分类能力。AUC越大,说明模型在区分正负样本上的表现越好。在实际应用中,一个AUC值接近1的模型通常被认为具有较高的预测准确性和可靠性。



  1. 正样本中被预测为正样本的概率,即:TPR (True Positive Rate)


  1. 负样本中被预测为正样本的概率,即:FPR (False Positive Rate)


ROC 曲线图像中,4 个特殊点的含义:


  1. (0, 0) 表示所有的正样本都预测为错误,所有的负样本都预测正确
  2. (1, 0) 表示所有的正样本都预测错误,所有的负样本都预测错误
  3. (1, 1) 表示所有的正样本都预测正确,所有的负样本都预测错误
  4. (0, 1) 表示所有的正样本都预测正确,所有的负样本都预测正确



绘制 ROC 曲线


在网页某个位置有一个广告图片或者文字,该广告共被展示了 6 次,有 2 次被浏览者点击了。



绘制 ROC 曲线:


阈值:0.9


  1. 原本为正例的 1、3 号的样本中 3 号样本被分类错误,则 TPR = ½ = 0.5
  2. 原本为负例的 2、4、5、6 号样本没有一个被分为正例,则 FPR = 0


阈值:0.8


  1. 原本为正例的 1、3 号样本被分类正确,则 TPR = 2/2 = 1
  2. 原本为负例的 2、4、5、6 号样本没有一个被分为正例,则 FPR = 0


阈值:0.7

  1. 原本为正例的 1、3 号样本被分类正确,则 TPR = 2/2 = 1
  2. 原本为负类的 2、4、5、6 号样本中 2 号样本被分类错误,则 FPR = ¼ = 0.25



💎 图像越靠近 (0,1) 点则模型对正负样本的辨别能力就越强且图像越靠近 (0, 1) 点则 ROC 曲线下面的面积就会越大。


  1. 当 AUC= 1 时,该模型被认为是完美的分类器,但是几乎不存在完美分类器


案例


y=churn['flag']
x=churn[['contract_month','internet_other','streamingtv']]
 
 
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3,random_state=100)
 
from sklearn import linear_model
lr=linear_model.LogisticRegression()
lr.fit(x_train,y_train)
 
y_pred_train=lr.predict(x_train)
y_pred_test=lr.predict(x_test)
import sklearn.metrics as metrics
metrics.accuracy_score(y_train,y_pred_train)
from sklearn.metrics import roc_auc_score
roc_auc_score(y_test, y_pred_test)    
 
# 网格搜索参数
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import GridSearchCV
kfold = StratifiedKFold(n_splits=5, shuffle=True)
lr = linear_model.LogisticRegression()
param_grid = {'solver': ['newton-cg', 'lbfgs', 'liblinear'],
              'C': [0.001, 0.01, 1, 10, 100],'class_weight':['balanced']}
search = GridSearchCV(lr, param_grid, cv=kfold)
lr = search.fit(x_train, y_train)


LogisticRegression(class_weight='balanced')参数的作用是在拟合模型时自动调整类别权重,以帮助处理不平衡的数据集。当使用class_weight='balanced'时,Scikit-learn的LogisticRegression会在计算损失函数时自动为每个类分配权重,使得较少出现的类别(少数类)获得更高的权重,以此来平衡各类别之间的样本数量差异。这样做有助于改善模型对少数类的识别能力,特别是在数据集中某些类的样本数量远少于其他类时,这种权重调整可以防止模型偏向于多数类。


相关文章
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
CogAgent-9B 是智谱AI基于 GLM-4V-9B 训练的专用Agent任务模型,支持高分辨率图像处理和双语交互,能够预测并执行GUI操作,广泛应用于自动化任务。
33 12
CogAgent-9B:智谱 AI 开源 GLM-PC 的基座模型,专注于预测和执行 GUI 操作,可应用于自动化交互任务
|
13天前
|
人工智能
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
AniDoc 是一款基于视频扩散模型的 2D 动画上色 AI 模型,能够自动将草图序列转换为彩色动画。该模型通过对应匹配技术和背景增强策略,实现了色彩和风格的准确传递,适用于动画制作、游戏开发和数字艺术创作等多个领域。
83 16
AniDoc:蚂蚁集团开源 2D 动画上色 AI 模型,基于视频扩散模型自动将草图序列转换成彩色动画,保持动画的连贯性
|
22天前
|
人工智能 安全 测试技术
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
EXAONE 3.5 是 LG AI 研究院推出的开源 AI 模型,擅长长文本处理,能够有效降低模型幻觉问题。该模型提供 24 亿、78 亿和 320 亿参数的三个版本,支持多步推理和检索增强生成技术,适用于多种应用场景。
74 9
EXAONE 3.5:LG 推出的开源 AI 模型,采用 RAG 和多步推理能力降低模型的幻觉问题
|
24天前
|
机器学习/深度学习 人工智能
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
SNOOPI是一个创新的AI文本到图像生成框架,通过增强单步扩散模型的指导,显著提升模型性能和控制力。该框架包括PG-SB和NASA两种技术,分别用于增强训练稳定性和整合负面提示。SNOOPI在多个评估指标上超越基线模型,尤其在HPSv2得分达到31.08,成为单步扩散模型的新标杆。
65 10
SNOOPI:创新 AI 文本到图像生成框架,提升单步扩散模型的效率和性能
|
24天前
|
人工智能 搜索推荐 开发者
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
Aurora是xAI为Grok AI助手推出的新图像生成模型,专注于生成高逼真度的图像,特别是在人物和风景图像方面。该模型支持文本到图像的生成,并能处理包括公共人物和版权形象在内的多种图像生成请求。Aurora的可用性因用户等级而异,免费用户每天能生成三张图像,而Premium用户则可享受无限制访问。
63 11
Aurora:xAI 为 Grok AI 推出新的图像生成模型,xAI Premium 用户可无限制访问
|
28天前
|
人工智能 编解码 网络架构
GenCast:谷歌DeepMind推出的AI气象预测模型
GenCast是由谷歌DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。该模型在97.2%的预测任务中超越了全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。GenCast能在8分钟内生成预报,显著提高预测效率,并且已经开源,包括代码和模型权重,支持更广泛的天气预报社区和研究。
159 14
GenCast:谷歌DeepMind推出的AI气象预测模型
|
27天前
|
机器学习/深度学习 人工智能 编解码
【AI系统】Transformer 模型小型化
本文介绍了几种轻量级的 Transformer 模型,旨在解决传统 Transformer 参数庞大、计算资源消耗大的问题。主要包括 **MobileVit** 和 **MobileFormer** 系列,以及 **EfficientFormer**。MobileVit 通过结合 CNN 和 Transformer 的优势,实现了轻量级视觉模型,特别适合移动设备。MobileFormer 则通过并行结构融合了 MobileNet 和 Transformer,增强了模型的局部和全局表达能力。
59 8
【AI系统】Transformer 模型小型化
|
26天前
|
存储 人工智能 PyTorch
【AI系统】模型转换流程
本文详细介绍了AI模型在不同框架间的转换方法,包括直接转换和规范式转换两种方式。直接转换涉及从源框架直接生成目标框架的模型文件,而规范式转换则通过一个中间标准格式(如ONNX)作为桥梁,实现模型的跨框架迁移。文中还提供了具体的转换流程和技术细节,以及模型转换工具的概览,帮助用户解决训练环境与部署环境不匹配的问题。
45 5
【AI系统】模型转换流程
|
29天前
|
机器学习/深度学习 存储 人工智能
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
EfficientTAM是Meta AI推出的轻量级视频对象分割和跟踪模型,旨在解决SAM 2模型在移动设备上部署时的高计算复杂度问题。该模型采用非层次化Vision Transformer(ViT)作为图像编码器,并引入高效记忆模块,以降低计算复杂度,同时保持高质量的分割结果。EfficientTAM在多个视频分割基准测试中表现出与SAM 2相当的性能,具有更快的处理速度和更少的参数,特别适用于移动设备上的视频对象分割应用。
46 9
EfficientTAM:Meta AI推出的视频对象分割和跟踪模型
|
26天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型转换基本介绍
模型转换技术旨在解决深度学习模型在不同框架间的兼容性问题,通过格式转换和图优化,将训练框架生成的模型适配到推理框架中,实现高效部署。这一过程涉及模型格式转换、计算图优化、算子统一及输入输出支持等多个环节,确保模型能在特定硬件上快速、准确地运行。推理引擎作为核心组件,通过优化阶段和运行阶段,实现模型的加载、优化和高效执行。面对不同框架的模型文件格式和网络结构,推理引擎需具备高度的灵活性和兼容性,以支持多样化的应用场景。
56 4
【AI系统】模型转换基本介绍