人工智能 or 人工“智能”

简介: 人工智能 or 人工“智能”

1.人工智能的历史  

       了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(Artificial Intelligence,简称AI)”这一概念,标志着人工智能学科的诞生。


  人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。人工智能的发展历程大概为以下6个阶段:

  1.起步发展期:

       1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

  2.反思发展期:

       20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

  3.应用发展期:

       20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。

  4.低迷发展期:

       20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

  5.稳步发展期:

       20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

  6.蓬勃发展期:

       2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

2.人工智能是否可以替代人类程序员

       ------依我拙见,不可以!!!

       AI程序员和人类程序员之间还存在很大差距。AI虽然在某些任务上表现出色,比如玩游戏、做简单计算,但要想真正替代人类,还有很长的路要走。

       我们来举个例子,假设公司要开发一个APP,让AI程序员来完成这个任务。第一步,AI程序员需要准确理解客户提出的需求,这已经很难了,因为AI理解能力还不如小学生。而人类程序员可以通过多次交流直接了解客户想要什么。

例子1:

       这是我最近人工智能的一小段对话(看我戏耍人工智能):

其实就是人们常说的文字游戏,不过,嘿嘿,它上当了。

例子2:

在举个更生动的例子:


真神和高仿我还是分的出来的!!!

       当然,程序开发过程中肯定会出现各种bug。AI程序员无法像人类一样通过调试快速找到问题所在。而人类程序员通过多年积累的经验,一眼就能看出bug在哪一行代码。在项目测试阶段,AI也无法像人类一样跟客户进行深入交互,了解测试情况,及时修复问题。而人类程序员通过与客户长期互动,深谙客户心思。(社会套路深,人工智能把握不住的!)

       总之,AI目前只能完成一些简单重复性工作,真正复杂的软件开发还需要人类程序员的智慧和经验。所以,在未来很长一段时间,AI不可能完全取代人类在编程领域的地位。我们不必过于担心,还是继续努力学习编程吧!

相关文章
|
14天前
|
人工智能 自然语言处理 小程序
政务VR导航:跨界融合AI人工智能与大数据分析,打造全方位智能政务服务
政务大厅引入智能导航系统,解决寻路难、指引不足及咨询台压力大的问题。VR导视与AI助手提供在线预览、VR路线指引、智能客服和小程序服务,提高办事效率,减轻咨询台工作,优化群众体验,塑造智慧政务形象。通过线上线下结合,实现政务服务的高效便民。
51 0
政务VR导航:跨界融合AI人工智能与大数据分析,打造全方位智能政务服务
|
17天前
|
机器学习/深度学习 人工智能 运维
智能运维:利用人工智能优化IT基础设施管理
【6月更文挑战第30天】随着企业对信息技术的依赖性不断增强,传统的运维管理方法已无法满足现代业务的需求。智能运维(AIOps)作为一种新兴的运维模式,通过集成大数据、机器学习和自动化技术,旨在提高运维效率,减少系统故障时间,并提升用户体验。本文将探讨智能运维的核心概念、实施步骤及其对企业IT基础设施管理的积极影响,同时也会讨论在实际应用中可能遇到的挑战与解决方案。
29 2
|
24天前
|
机器学习/深度学习 人工智能 搜索推荐
智能增强:人工智能在个性化学习中的应用
【6月更文挑战第22天】随着技术的不断进步,人工智能(AI)已经渗透到教育领域,为个性化学习带来了革命性的变化。本文将探讨AI如何通过数据分析、模式识别和自适应学习路径等技术手段,实现对学生学习能力和偏好的精准把握,并据此提供定制化的学习内容和策略。文章还将分析AI在提升教育质量、促进教育公平以及预测学生表现等方面的潜力与挑战,旨在揭示AI技术如何在塑造未来教育格局中发挥关键作用。
|
23天前
|
人工智能 搜索推荐 算法
智能增强:人工智能在个性化教育中的应用
【6月更文挑战第24天】本文探讨了人工智能(AI)如何革新传统教育模式,通过个性化学习路径、实时反馈和评估以及辅助教师决策等手段,实现教育资源的优化配置和教学方法的个性化调整。AI技术不仅能够提升学生的学习效率,还能够为教师提供教学上的辅助,从而推动教育的智能化发展。
35 2
|
7天前
|
机器学习/深度学习 人工智能 运维
智能化运维的崛起:自动化与人工智能在IT管理中的融合
本文深入探讨了智能化运维在现代企业中的重要性,并分析了自动化技术和人工智能(AI)如何共同推动IT运维管理的革新。文章首先概述了传统运维面临的挑战,然后详细介绍了智能化运维的核心概念和实施步骤,最后通过具体案例展示了智能化运维在实际工作中的应用效果和潜在价值。
9 0
|
14天前
|
机器学习/深度学习 人工智能 监控
智能增强:人工智能在个性化学习中的应用
【7月更文挑战第3天】随着人工智能技术的飞速发展,教育领域正经历着一场革命。本文将探讨AI如何通过智能增强技术,实现个性化学习,从而提高教育质量和效率。我们将分析AI在识别学生需求、适应不同学习风格、提供实时反馈和调整教学内容方面的能力,并讨论这些技术对传统教育模式的影响,以及未来可能的发展方向。
22 0
|
15天前
|
机器学习/深度学习 人工智能 运维
智能化运维的演进之路:从自动化到人工智能
本文将探索智能化运维(AIOps)的发展脉络,从早期的脚本自动化到现今集成人工智能技术的高级阶段。文章将基于最新的行业报告、学术论文和案例研究,深入分析AIOps如何通过数据驱动的方法提升运维效率和预测性维护的能力,以及这一转变对IT运维专业人员技能要求的影响。
|
15天前
|
机器学习/深度学习 数据采集 人工智能
AI(人工智能)大模型:智能新突破与挑战
在人工智能的发展历程中,我们始终追求的是大模型的智能化。这包括对复杂环境的理解力、面对未知情况的泛化能力,以及在各种情况下的适应性。这些因素是衡量一个智能模型优秀与否的关键。而提升大模型在这些方面的表现,不仅能够推动人工智能的发展,更能够拓宽其应用的范围。因此,寻找并采取有效的策略,使大模型走向更加聪明,是我们在未来人工智能发展中必须要面对和解决的重要问题。
15 0
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
智能时代的引擎:深度学习与人工智能的未来
本文将探讨深度学习如何成为推动人工智能发展的关键技术,分析其原理、挑战以及未来趋势。我们将从基础概念入手,逐步深入到深度学习的高级应用,并讨论其在各行各业中的实际影响,最后预测深度学习技术未来的发展方向。
20 0
|
2天前
|
人工智能 搜索推荐 数据处理
苹果发布最新人工智能系统——Apple Intelligence,重新定义AI
Apple推出Apple Intelligence,集成于iOS 18等系统中,提供情境感知的个性化服务。新功能包括跨应用操作、屏幕阅读、写作辅助、图像生成及邮件管理。Siri升级,支持语言理解与生成。未来计划扩展多语言支持、集成第三方模型。与OpenAI合作将ChatGPT融入Siri。
13 5