分布式系统详解--框架(Hadoop-Ssh免密登陆配置)

简介: 分布式系统详解--框架(Hadoop-Ssh免密登陆配置)

分布式系统详解--框架(Hadoop-Ssh免密登陆配置)

        配置Ssh非常简单,其实就是为了避免将来集群机器变得很多导致操作本机、后者操作其它服务器输入密码的次数太多而浪费了太多的时间,在这儿我们配置了这个Ssh免登录将会节省一大部分时间。我们看如何来解决这一问题。

一、测试从一台服务器登录另外一台服务器。

通过图片发现,需要进行输入密码才能进入另外一台。

二、ssh免登录

2.1 查看 /.ssh/目录下的文件信息。

2.2 看官网上如何开启ssh步骤。

2.3 一律回车即可,在这儿没有设置密码。看到下面图即以设置成功。

2.4 查看   ll~/.ssh/ 可以看到多了两个文件 id_rsa     id_rsa.pub

2.5 设置免登陆

ssh-copy-id MyLinux

ssh-copy-id centos01

ssh-copy-id centos02

2.6 免登陆测试 ssh centos01

三、一键启动和退出

可以通过jps进行查看各个服务器中的进程。

3.1 stop-all.sh

3.2 start-all.sh

OK,就这样,简单的ssh免密登录+一键启动停止服务就这么完成了

目录
相关文章
|
1月前
|
存储 监控 数据可视化
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
415 66
|
28天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
75 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
25天前
|
消息中间件 负载均衡 Java
如何设计一个分布式配置中心?
这篇文章介绍了分布式配置中心的概念、实现原理及其在实际应用中的重要性。首先通过一个面试场景引出配置中心的设计问题,接着详细解释了为什么需要分布式配置中心,尤其是在分布式系统中统一管理配置文件的必要性。文章重点分析了Apollo这一开源配置管理中心的工作原理,包括其基础模型、架构模块以及配置发布后实时生效的设计。此外,还介绍了客户端与服务端之间的交互机制,如长轮询(Http Long Polling)和定时拉取配置的fallback机制。最后,结合实际工作经验,分享了配置中心在解决多台服务器配置同步问题上的优势,帮助读者更好地理解其应用场景和价值。
62 18
|
16天前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
50 7
|
1月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
93 2
|
2月前
|
存储 Java 关系型数据库
在Spring Boot中整合Seata框架实现分布式事务
可以在 Spring Boot 中成功整合 Seata 框架,实现分布式事务的管理和处理。在实际应用中,还需要根据具体的业务需求和技术架构进行进一步的优化和调整。同时,要注意处理各种可能出现的问题,以保障分布式事务的顺利执行。
142 6
|
2月前
|
消息中间件 运维 数据库
Seata框架和其他分布式事务框架有什么区别
Seata框架和其他分布式事务框架有什么区别
47 1
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
226 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
103 2
|
1月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
72 4