数组计算模块NumPy(二)

简介: NumPy教程概要:介绍数组切片、二维数组索引、重塑、转置和数组操作。讨论了切片语法`[start:stop:step]`,二维数组的索引方式,以及reshape方法改变数组形状。涉及转置通过`.T`属性或`transpose()`函数实现,数组增加使用`hstack()`和`vstack()`,删除用`delete()`。还提到了矩阵运算,包括加减乘除,并展示了`numpy.dot()`和`@`运算符的使用。最后提到了排序函数`sort()`、`argsort()`和`lexsort()`,以及NumPy的统计分析函数如均值、标准差等。

数组计算模块NumPy(一)+https://developer.aliyun.com/article/1543956?spm=a2c6h.13148508.setting.27.1fa24f0eyCLrzp



切片式索引


  • 语法结构  [start:stop:step]
  • start:起始索引
  • stop:终止索引
  • step:步长


二维数组索引 语法格式   array[n,m]


二维数组的切片式索引



数组重塑


  • 数组重塑是更改数组的形状
  • 使用reshape方法,用于改变数组的形状    
  • 重塑后数组所包含的元素个数必须与原数组的元素个数相同,元素发生变化,程序就会报错    


数组转置


  • 数组的行列转换
  • 通过数组的T属性和transpose方法实现


数组的增加


  • 水平方向增加数据 hstack()函数
  • 垂直方向增加数据 vstack()函数


数组的删除


  • 使用delete()函数


矩阵 矩阵是数学的概念,而数组是计算机程序设计领域的概念。在NumPy中,矩阵是数组的分支,二维数组也称为矩阵 。


创建矩阵    numpy.mat()函数


矩阵运算    可以对矩阵进行加、减、乘、除运算



矩阵的乘法运算


import numpy as np
 
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
 
# 使用numpy.dot()函数进行矩阵乘法
C = np.dot(A, B)
print(C)
 
# 使用@运算符进行矩阵乘法
D = A @ B
print(D)
 
 
#
[[19 22]
 [43 50]]
[[19 22]
 [43 50]]


数组的排序  


对数组元素进行排序


  • sort():直接改变原数组,参数axis指定按行排序还是按列排序
  • argsort():返加升序之后的数组值为从小到大的索引值
  • lexsort():用于对多个序列进行排序


NumPy常用分析函数





相关文章
|
19天前
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
28 1
|
27天前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
52 10
|
19天前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
23 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
22天前
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
31 2
|
27天前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
78 4
|
17天前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
27 0
|
2月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
53 0
|
3月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
51 0
|
2月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
41 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
|
3月前
|
机器学习/深度学习 存储 算法
NumPy 与 SciPy:Python 科学计算库的比较
【8月更文挑战第30天】
118 5