数组计算模块NumPy(一)

简介: NumPy是Python科学计算的核心库,提供高性能的数组和矩阵操作,支持大量数学函数。它包括一维、二维到多维数组,并通过C实现,优化了计算速度。

NumPy是Python数组计算、矩阵运算和科学计算的核心库。


  • 提供了高性能的数组对象
  • 提供了大量的函数和方法
  • NumPy使用机器学习中的操作变得简单
  • NumPy是通过C语言实现的


NumPy的安装  pip install numpy


数组的分类


  • 一维数组 跟Python列表的形状一样,区别在于数组的切片是针对原始数组
  • 二维数组 以数组作为数组元素,二维数组包括行和列,类似于表格,又称为矩阵
  • 三维数组(多维数组) 为数为三的数组元素,也称矩阵列表


轴的概念  :轴是NumPy模块里的axis,指定某个axis就是沿着axis做相关操作


创建简单的数组


numpy.array(object,dtype=None,copy=True,ndmin=0)


不同方式创建数组


  • 创建指定维度和数据类型未初始化的数组  np.empty()
  • 创建指定维度以0填充的数组  np.zeros()
  • 创建指定维度以1填充的数组  np.ones()
  • 创建指定维度和类型的数组并以指定值填充  np.full()


从数值范围创建数组


  • 通过数值范围创建数组 arange(start,stop,step,dtype=None)


  • 使用linspace函数创建等差数列linspace(start,stop,num=50,endpoint=True,retstep=False,dtype=None)


  • 使用logspace函数创建等比数列 logspace(start,stop,num=50,endpoint=True,base=10.0,dtype=None)


生成随机数组


  • 生成(0,1)之间的随机数组        np.random.rand()
  • 随机生成满足正态分布的数组 np.random.randn()
  • 生成一定范围内的随机数组     np.random.randint()
  • 生成正态分布的随机数组         np.random.normal()


Numpy的数据类型比Python数据类型增加了更多种类的数值类型,为了区别于Python的数据类型,像bool、int、float等数据类型的名称末尾都加了 “_”




索引


  • 用于标记数组当中对应元素的唯一数字,从0开始
  • 索引的区间范围   [0~N-1]
  • 索引的使用语法   obj[index]



数组计算模块NumPy(二)+https://developer.aliyun.com/article/1543958?spm=a2c6h.13148508.setting.26.1fa24f0ewU5jCe

相关文章
|
1天前
|
计算机视觉 Python
PIL图像转换为Numpy数组:技术与案例详解
本文介绍了如何将PIL图像转换为Numpy数组,以便利用Numpy进行数学运算和向量化操作。首先简要介绍了PIL和Numpy的基本功能,然后详细说明了转换过程,包括导入库、打开图像文件、使用`np.array()`或`np.asarray()`函数进行转换,并通过打印数组形状验证转换结果。最后,通过裁剪、旋转和缩放等案例展示了转换后的应用,以及如何将Numpy数组转换回PIL图像。此外,还介绍了处理base64编码图像的完整流程。
13 4
|
2月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
93 10
|
2月前
|
Python
Numpy学习笔记(四):如何将数组升维、降维和去重
本文介绍了如何使用NumPy库对数组进行升维、降维和去重操作。
53 1
|
2月前
|
Python
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
NumPy库中的`np.concatenate`和`np.append`函数,它们分别用于沿指定轴拼接多个数组以及在指定轴上追加数组元素。
46 0
Numpy学习笔记(五):np.concatenate函数和np.append函数用于数组拼接
|
2月前
|
Python
使用 NumPy 进行数组操作的示例
使用 NumPy 进行数组操作的示例
39 2
|
2月前
|
索引 Python
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧1
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
116 4
|
2月前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
46 0
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
103 0
|
4月前
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
64 0
|
1月前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
46 3
下一篇
DataWorks