【YOLOv8改进】MSFN(Multi-Scale Feed-Forward Network):多尺度前馈网络

简介: **HCANet: 高光谱图像去噪新方法**\n混合卷积与注意力网络(Hybrid Convolutional and Attention Network)是针对HSI去噪的创新模型,结合CNN和Transformer,强化全局与局部特征。它使用卷积注意力融合模块捕获长距离依赖和局部光谱相关性,多尺度前馈网络提升多尺度信息聚合。代码可在[GitHub](https://github.com/summitgao/HCANet)获取。

摘要

摘要——高光谱图像(HSI)去噪对于高光谱数据的有效分析和解释至关重要。然而,同时建模全局和局部特征以增强HSI去噪的研究却很少。在本文中,我们提出了一种混合卷积和注意力网络(HCANet),该网络结合了卷积神经网络(CNN)和Transformers的优势。为了增强全局和局部特征的建模,我们设计了一个卷积和注意力融合模块,旨在捕捉长距离依赖关系和邻域光谱相关性。此外,为了改进多尺度信息聚合,我们设计了一个多尺度前馈网络,通过在不同尺度上提取特征来增强去噪性能。在主流HSI数据集上的实验结果表明,所提出的HCANet具有合理性和有效性。所提出的模型在去除各种复杂噪声方面表现出色。我们的代码可在https://github.com/summitgao/HCANet获得。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

这篇文章介绍了一种名为Hybrid Convolutional and Attention Network (HCANet)的模型,用于高光谱图像去噪。该模型结合了卷积神经网络和Transformer的优势,以有效地去除高光谱图像中的噪声。文章提出了注意力机制,用于捕获远程依赖性和邻域光谱相关性,以增强全局和局部特征建模。通过设计卷积和注意力融合模块以及多尺度前馈网络,该模型能够在不同尺度提取特征,从而提高去噪性能。

  1. 结构概述:HCANet采用了U型网络结构,其中包含多个Convolution Attention Mixing(CAMixing)块。每个CAMixing块由两部分组成:卷积和注意力融合模块(CAFM)以及多尺度前馈网络(MSFN)。

  2. CAFM模块:在CAFM模块中,局部分支利用卷积和通道重排来提取局部特征,全局分支则利用注意力机制来捕获长距离依赖关系。这种结合了卷积和注意力的设计使得模型能够综合建模全局和局部特征,从而提高去噪性能。

  3. MSFN模块:MSFN模块用于多尺度信息聚合,通过三个并行的具有不同步长的扩张卷积来实现。这有助于在不同尺度提取特征,有效地抑制多尺度的噪声。

  4. 训练过程:HCANet首先使用3x3x3卷积提取低级特征,然后通过U型网络结构和跳跃连接来生成噪声残差图。最终,通过重建损失和全局梯度正则化器来训练模型,以实现高光谱图像的去噪。

通过结合CAFM模块和MSFN模块,HCANet能够有效地利用卷积和注意力机制,同时在不同尺度提取特征,从而提高高光谱图像去噪的性能和效果。

MSFN

多尺度前馈网络(MSFN)是HCANet模型中的一个关键组成部分,用于在不同尺度上提取特征并增强非线性信息转换。

  1. 结构概述:MSFN旨在通过在不同尺度上提取特征来增强信息聚合。在每个CAMixing块之后,CAFM的输出被送入MSFN,以聚合多尺度特征并增强非线性信息转换。

  2. 特征扩展:MSFN首先使用两个1x1卷积来扩展特征通道,通常使用扩展比率γ=2。这有助于增加特征的维度,以便更好地捕获多尺度信息。

  3. 多尺度特征提取:MSFN通过两个并行路径处理输入特征,并引入门控机制来通过两个路径的特征元素相乘来增强非线性转换。在较低路径中,使用深度卷积进行特征提取;在较高路径中,使用多尺度扩张卷积进行多尺度特征提取。

  4. 特征聚合:MSFN通过多尺度卷积来聚合不同尺度的特征表示,从而提高模型对多尺度信息的利用能力。这有助于模型更好地理解高光谱图像的复杂结构和特征。

yolov8 代码引入

## 多尺度前馈网络 (MSFN)
class FeedForward(nn.Module):
    def __init__(self, dim, ffn_expansion_factor, bias):
        super(FeedForward, self).__init__()

        hidden_features = int(dim * ffn_expansion_factor)

        self.project_in = nn.Conv3d(dim, hidden_features * 3, kernel_size=(1, 1, 1), bias=bias)

        self.dwconv1 = nn.Conv3d(hidden_features, hidden_features, kernel_size=(3, 3, 3), stride=1, dilation=1, padding=1, groups=hidden_features, bias=bias)
        self.dwconv2 = nn.Conv2d(hidden_features, hidden_features, kernel_size=(3, 3), stride=1, dilation=2, padding=2, groups=hidden_features, bias=bias)
        self.dwconv3 = nn.Conv2d(hidden_features, hidden_features, kernel_size=(3, 3), stride=1, dilation=3, padding=3, groups=hidden_features, bias=bias)

        self.project_out = nn.Conv3d(hidden_features, dim, kernel_size=(1, 1, 1), bias=bias)

    def forward(self, x):
        x = x.unsqueeze(2)
        x = self.project_in(x)
        x1, x2, x3 = x.chunk(3, dim=1)
        x1 = self.dwconv1(x1).squeeze(2)
        x2 = self.dwconv2(x2.squeeze(2))
        x3 = self.dwconv3(x3.squeeze(2))
        x = F.gelu(x1) * x2 * x3
        x = x.unsqueeze(2)
        x = self.project_out(x)
        x = x.squeeze(2)
        return x

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139212227

相关文章
|
5天前
|
计算机视觉
【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数
MFDS-DETR是针对白细胞检测的创新方法,它通过HS-FPN和可变形自注意力解决规模差异和特征稀缺问题。HS-FPN利用通道注意力模块增强特征表达,改善多尺度挑战。代码和数据集可在给定链接获取。此方法在WBCDD、LISC和BCCD数据集上表现优越,证明了其有效性和通用性。YOLO系列文章提供了更多目标检测改进和实战案例。
|
8天前
|
机器学习/深度学习 自然语言处理 PyTorch
【chatgpt问答记录】前馈神经网络
【chatgpt问答记录】前馈神经网络
22 1
|
10天前
|
Docker 容器
docker network inspect 查询出来的网络的创建命令是什么
【6月更文挑战第17天】docker network inspect 查询出来的网络的创建命令是什么
18 1
|
13天前
|
机器学习/深度学习 自然语言处理 并行计算
YOLOv8改进 | 注意力机制 | 在主干网络中添加MHSA模块【原理+附完整代码】
Transformer中的多头自注意力机制(Multi-Head Self-Attention, MHSA)被用来增强模型捕捉序列数据中复杂关系的能力。该机制通过并行计算多个注意力头,使模型能关注不同位置和子空间的特征,提高了表示多样性。在YOLOv8的改进中,可以将MHSA代码添加到`/ultralytics/ultralytics/nn/modules/conv.py`,以增强网络的表示能力。完整实现和教程可在提供的链接中找到。
|
9天前
|
Web App开发 JSON 前端开发
网络调试利器:Chrome Network工具的详细指南
Chrome开发者工具的Network面板是测试工程师的利器,用于监视HTTP请求、响应及资源加载。打开它可通过右键点击页面选择“检查”或使用快捷键。界面包含请求列表和详细信息,如Headers、Preview、Response、Timing。过滤器帮助定位特定请求,而瀑布流图展示加载顺序。模拟网络环境和保存HAR文件功能便于性能分析和问题排查。
19 0
|
1月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
20天前
|
网络协议 算法 Linux
【嵌入式软件工程师面经】Linux网络编程Socket
【嵌入式软件工程师面经】Linux网络编程Socket
39 1
|
5天前
|
安全 物联网 Linux
学习Linux对网络安全的重要性
**学习Linux对网络安全至关重要:** 1. 开源操作系统广泛应用于服务器、网络设备,掌握Linux是安全专家必备技能。 2. Linux内置安全特性,如最小权限和防火墙,加上丰富的安全工具,提供强大保障。 3. 可定制性允许灵活配置,满足安全需求,开源社区提供持续更新和教育资源。 4. 学习Linux能提升攻防能力,用于系统加固和渗透测试,适应跨平台安全场景。 5. 随着云计算和物联网发展,Linux在网络安全中的角色日益关键。
29 3
|
22天前
|
Linux 数据安全/隐私保护 Windows
linux 搭建cloudreve win映射网络驱动器WebDav
linux 搭建cloudreve win映射网络驱动器WebDav
26 1
|
23天前
|
监控 网络协议 Ubuntu
Linux网络配置全攻略:解读/etc/network/interfaces文件的精髓
Linux网络配置全攻略:解读/etc/network/interfaces文件的精髓
65 1

热门文章

最新文章