Java核心技术第八章-泛型

简介: Java核心技术第八章-泛型

摘要

本文根据《Java核心技术 卷一》一书的第八章总结而成,部分文章摘抄书内,作为个人笔记。

文章不会过于深入,望读者参考便好。

为什么要使用泛型程序设计

泛型程序设计(Generic programming) 意味着编写的代码可以被很多不同类型的对象所重用。

类型参数的好处

在没有泛型类之前,ArrayList类只维护一个Object引用的数组:

public class ArrayList {
   private Object[] elementData; // 用于存放数据
   public Object get(int i) { . . . }
   public void add(Object o) { . . . }
     ...
}

问题

1.获取一个值时必须进行强制类型转换

2.这里没有错误检査。可以向数组列表中添加任何类的对象,如果数组的类型不一致,将 get 的结果进行强制强制类型,就会错误。

泛型提供了一个更好的解决方案: 类型参数:

ArrayList<String> array = new ArrayList<String>():

利用类型参数的信息,我们就可以在添加数据的时候保持类型统一,调用get方法时候也不需要进行强制类型转换,因为我们在初始化的时候就定义了类型,编译器识别返回值的类型就会帮我们转换该类型。

定义一个简单泛型类

public class Pair<T> {
    private T num;
 
    public Pair(T num) { this.num = num; }
    public T getNum() { return num; }
    public void setNum(T num) { this.num = num; }
}

我们可以看到,在Pair类名后面添加了一个 ,这个是泛型类的类型变量,而且还可以有多个类型变量,如

public class Pair<T,U> {
    ...
}

如果我们实例化Pair类,例如:

new Pair<String>;

那么我们就可以把上述的Pair类想象成如下:

public class Pair<String> {
    private String num;
 
    public Pair(String num) { this.num = num; }
    public String getNum() { return num; }
    public void setNum(String num) { this.num = num; }
}

是不是很简单呢?在Java库中,使用变量E表示集合的元素类型,K和V分别表示表的关键字与值的类型,T、U、S表示任意类型。

泛型方法

定义一个带有类型参数的方法

    public static <T> T getMiddle(T... a) {
        return a[a.length / 2];
    }

可以看到类型变量(< T >)放在修饰符( public static )的后面,返回类型(T)的前面。泛型方法可以定义在普通类或泛型类中。

类型变量的限定

如果我们需要对类型变量加以约束,例如:传入的变量必须实现Comparable接口,因为需要该变量调用compareTo的方法。这样我们就可以使用extends关键字对变量进行限定。

    public <T extends Comparable> T max(T a) {
        a.compareTo(...);
        ...
    }

无论变量需要限定为继承某个类或者实现某个接口,都是使用extends关键字进行限定。

泛型代码和虚拟机

类型擦除

无论我们在代码中怎么定义一个泛型类、泛型方法,都提供了一个相应的原始类型。原始类型的名字就是删去类型参数后的泛型类姓名。如 <T> 的原始类型为 Object<T extends MyClass>的原始类型为MyClass

代码就像下面这样:

public class Pair<T> {
    private T property;
 
    public Pair(T property) {
        this.property = property;
    }
}

类型擦除后:

public class Pair<Object> {
    private Object property;
 
    public Pair(Object property) {
        this.property = property;
    }
}

翻译泛型表达式

如果擦除返回类型,编译器会插入强制类型转换,就像下面这样:

Pair<Employee> buddies = . .
Employee buddy = buddies.getFirst();

擦除getFirst的返回类型后将返回Object类型,但是编译器将自动帮我们强制类型转换为Employee。

所以:编译器把这个方法执行操作分为两条指令:

对原始方法Pair.getFirst的调用

将返回的Object类型强制转换为Employee类型

小节总结:

虚拟机中没有泛型,只有普通的类和方法

所有的类型参数都用他们的限定类型替换

为保持类型安全性,必要时插入强制类型转换

桥方法被合成来保持多态(本文没有讲到,不过桥方法可以忽略,Java编写不规范才会有桥方法生成)

约束与局限性

不能用基本类型实例化类型参数

不可以用八大基本数据类型去实例化类型参数,你也没见过ArrayList<int>这样的代码吧。只有ArrayList<Integer>。原因是因为基本数据类型是不属于Object的。所以只能用他们的包装类型替换。

运行时类型查询只适用于原始类型

所有的类型查询只产生原始类型,因为在虚拟机没有所谓的泛型类型。

例如:

    Pair<String> pair = new Pair<String>("johnson");
    if (pair instanceof Pair<String>) {} // Error
    if (pair instanceof Pair<T>) {} // Error
    if (pair instanceof Pair) {} // Pass

不能创建参数化类型的数组

Pair<String>[] pairs = new Pair<String>[10]; //error

为什么不能这样定义呢?因pairs的类型是Pair[],可以转换为Object[],如果试图存储其他类型的元素,就会抛出ArrayStoreException异常,

pairs[0] = 10L; //抛异常

总之一句话,不严谨。所以不能创建参数化类型的数组。

不能实例化类型变量

不能使用 new T(...)、new T[...] 或 T.class。因为类型擦除后,T将变成Object,而且我们肯定不是希望实例化Object。

不过在Java8之后,我们可以使用Supplier<T>接口实现,这是一个函数式接口,表示一个无参数而且有返回类型为T的函数:

public class Pair<T> {
    private T first;
    private T second;
 
    private Pair(T first, T second) {
        this.first = first;
        this.second = second;
    }
 
    public static <T> Pair<T> makePair(Supplier<T> constr) {
        return new Pair<>(constr.get(), constr.get());
    }
    
    public static void main(String[] args) {
        Pair<String> pair = Pair.makePair(String::new);
    }
}

泛型类中的静态上下文中类型变量无效

不能在静态域或方法中引用类型变量。例如:

public class Pair<T> {
    private static T instance; //Error
 
    public static T getInstance() { //Error
        if (instance == null) 
            instance = new Pair<T>();
        return instance;
    }
}

因为类中的类型变量(<T>)是在对象中的作用域有效,而不是在类中的作用域有效。如果要使用泛型方法,可以参照文章上面的泛型方法哦~

不能抛出或捕获泛型类的实例

即不能抛出也不能捕获泛型类的对象,甚至扩展Throwable都是不合法的:

public class Pair<String> extend Exceotion {} //Error
public static <T extends Throwable> void doWork(Class<T> t) {
    try {
        ...
    } catch (T e) { //Error
        ...
    }
}

但是在抛出异常后对异常使用类型变量是允许的(个人感觉没见过这样的代码)。

public static <T extends Throwable> void doWork(Class<T> t) throw T { //Pass
    try {
        ...
    } catch (Exception e) {
        throw e;
    }
}

泛型类型的继承规则

Manager类继承Employee类。但是Pair<Employee>Pair<Manager>是没有关联的。就像下面的代码,就会提示报错,传递失败:

        Pair<Manager> managerPair = new Pair<Manager>();
        Pair<Employee> employeePair = managerPair; //Error

通配符类型

通配符概念

通配符类型中,允许类型参数变化,使用 ? 标识通配符类型:

Pair<? extends Employee>

若Pair类如下

public class Pair<T> {
    private T object;
 
    public void setObject(T object) {
        this.object = object;
    }
}

那么使用通配符可以解决泛型类型的继承规则问题,如:

        Pair<Manager> managerPair = new Pair<Manager>();
        Pair<? extends Employee> employeePair = managerPair; //Pass
        Manager manager = new Manager();
        employeePair.setObject(manager); //Error

使用<? extends Employee>,编译器只知道employeePair 是Employee的子类,但是不清楚具体是什么子类,所以最后一步employeePair.setObject(manager)不能执行。

通配符的超类型限定

通配符还有一个附加的能力,就是可以指定一个超类型限定,如:

public class Pair<T> [
    ...
    public static void salary(Pair<? super Manager> result) {
        //...
    }
}

<? super Manager>这个通配符为Manager的所有超类型(包含Manger),例如:

        Pair<Manager> managerPair = new Pair<Manager>();
        Pair<Employee> employeePair = new Pair<Employee>();
 
        Pair.salary(managerPair); //Pass
        Pair.salary(employeePair); //Pass
 
        // 假如 ManagerChild为Manager子类
        Pair<ManagerChild> managerChildPair = new Pair<ManagerChild>();
        Pair.salary(managerChildPair); //Error

无限定通配符

无限定通配符,如:Pair<?>,当我们不需要理会他的实际类型时候,就可以使用无限定通配符,上代码:

    public static boolean hasNull(Pair<?> pair) {
        return pair.getObject() == null;
    }

说实话,通配符搞得我头昏脑胀的,反复不断地看文章,才开始慢慢看懂,我太难了。。。



文章到这里就结束啦,不知道各位小伙伴看懂了没,没看懂的话可能是我的功底和文章写作能力还有待提高,小伙伴们也可以去看一下《Java核心技术 卷一》

这本书呢,感觉还是挺不错的。最近把这本书捡起来看也是发现基础是非常重要的,先把基础沉淀好了,再学习其他的技术点也会更容易入手,也会知其然知其所然。最近非常喜欢的一句话,送给大家:“万丈高楼平地起,勿在浮沙筑高台”。

相关文章
|
7天前
|
存储 监控 安全
单位网络监控软件:Java 技术驱动的高效网络监管体系构建
在数字化办公时代,构建基于Java技术的单位网络监控软件至关重要。该软件能精准监管单位网络活动,保障信息安全,提升工作效率。通过网络流量监测、访问控制及连接状态监控等模块,实现高效网络监管,确保网络稳定、安全、高效运行。
35 11
|
17天前
|
XML Java 编译器
Java注解的底层源码剖析与技术认识
Java注解(Annotation)是Java 5引入的一种新特性,它提供了一种在代码中添加元数据(Metadata)的方式。注解本身并不是代码的一部分,它们不会直接影响代码的执行,但可以在编译、类加载和运行时被读取和处理。注解为开发者提供了一种以非侵入性的方式为代码提供额外信息的手段,这些信息可以用于生成文档、编译时检查、运行时处理等。
53 7
|
17天前
|
JavaScript 安全 Java
java版药品不良反应智能监测系统源码,采用SpringBoot、Vue、MySQL技术开发
基于B/S架构,采用Java、SpringBoot、Vue、MySQL等技术自主研发的ADR智能监测系统,适用于三甲医院,支持二次开发。该系统能自动监测全院患者药物不良反应,通过移动端和PC端实时反馈,提升用药安全。系统涵盖规则管理、监测报告、系统管理三大模块,确保精准、高效地处理ADR事件。
|
1月前
|
监控 前端开发 Java
【技术开发】接口管理平台要用什么技术栈?推荐:Java+Vue3+Docker+MySQL
该文档介绍了基于Java后端和Vue3前端构建的管理系统的技术栈及功能模块,涵盖管理后台的访问、登录、首页概览、API接口管理、接口权限设置、接口监控、计费管理、账号管理、应用管理、数据库配置、站点配置及管理员个人设置等内容,并提供了访问地址及操作指南。
|
1月前
|
JSON 前端开发 JavaScript
java-ajax技术详解!!!
本文介绍了Ajax技术及其工作原理,包括其核心XMLHttpRequest对象的属性和方法。Ajax通过异步通信技术,实现在不重新加载整个页面的情况下更新部分网页内容。文章还详细描述了使用原生JavaScript实现Ajax的基本步骤,以及利用jQuery简化Ajax操作的方法。最后,介绍了JSON作为轻量级数据交换格式在Ajax应用中的使用,包括Java中JSON与对象的相互转换。
45 1
|
1月前
|
SQL Java 数据库连接
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率。本文介绍了连接池的工作原理、优势及实现方法,并提供了HikariCP的示例代码。
53 3
|
1月前
|
SQL 监控 Java
Java连接池技术的最新发展,包括高性能与低延迟、智能化管理与监控、扩展性与兼容性等方面
本文探讨了Java连接池技术的最新发展,包括高性能与低延迟、智能化管理与监控、扩展性与兼容性等方面。同时,结合最佳实践,介绍了如何选择合适的连接池库、合理配置参数、使用监控工具及优化数据库操作,以实现高效稳定的数据库访问。示例代码展示了如何使用HikariCP连接池。
19 2
|
1月前
|
Java 数据库连接 数据库
深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能
在Java应用开发中,数据库操作常成为性能瓶颈。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能。文章介绍了连接池的优势、选择和使用方法,以及优化配置的技巧。
39 1
|
1月前
|
算法 Java 数据库连接
Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性
本文详细介绍了Java连接池技术,从基础概念出发,解析了连接池的工作原理及其重要性。连接池通过复用数据库连接,显著提升了应用的性能和稳定性。文章还展示了使用HikariCP连接池的示例代码,帮助读者更好地理解和应用这一技术。
58 1
|
1月前
|
SQL Java 数据库连接
打破瓶颈:利用Java连接池技术提升数据库访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,避免了频繁的连接建立和断开,显著提升了数据库访问效率。常见的连接池库包括HikariCP、C3P0和DBCP,它们提供了丰富的配置选项和强大的功能,帮助优化应用性能。
63 2