【洛谷 P1980】[NOIP2013 普及组] 计数问题 题解(取余)

简介: NOIP2013普及组计数问题,求区间[1, n]内数字x出现的次数。输入为n和x,输出x的出现次数。样例输入11 1,输出4。代码通过逐位检查每个数是否等于x来计数,适用于$n\leq10^6$,$0\leq x\leq 9$的情况。

[NOIP2013 普及组] 计数问题

题目描述

试计算在区间 $1$ 到 $n$ 的所有整数中,数字 $x$($0\le x\le9$)共出现了多少次?例如,在 $1$ 到 $11$ 中,即在 $1,2,3,4,5,6,7,8,9,10,11$ 中,数字 $1$ 出现了 $4$ 次。

输入格式

$2$ 个整数 $n,x$,之间用一个空格隔开。

输出格式

$1$ 个整数,表示 $x$ 出现的次数。

样例 #1

样例输入 #1

11 1

样例输出 #1

4

提示

对于 $100\%$ 的数据,$1\le n\le 10^6$,$0\le x \le 9$。

思路

求每个数字的每一位数,统计x出现的次数。

AC代码

#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;

int main() {
   
    int n, x;
    int cnt;
    cin >> n >> x;
    for (int i = 1; i <= n; i++)
    // int i = 12345;
    {
   
        int m = 10;
        int w = i % m;
        if(w == x){
   
            cnt++;
        }
        // cout << w << endl;
        for(int t = i; t > 9;t /= 10) {
   
            w = (i % (m * 10) - i % m) / m;
            // cout << w << endl;
            m *= 10;
            if (w == x)
            {
   
                cnt++;
            }
        }
    }
    cout << cnt << endl;
    return 0;
}
目录
相关文章
|
5月前
【洛谷 P1307】[NOIP2011 普及组] 数字反转 题解(取余)
NOIP2011普及组试题,要求反转整数N的位得到新数,保持正负号和非零最高位。输入一个整数N,输出反转后的新数。样例输入1:123,输出:321;样例输入2:-380,输出:-83。代码使用取余法实现,处理负数时保留符号。
49 0
|
5月前
|
C++
【洛谷 P1307】[NOIP2011 普及组] 数字反转 题解(字符串)
**NOIP2011普及组题目:给定整数N,反转其位得到新数。新数首位非0(除非N=0)。输入0时直接输出0,其他情况输出反转后的数,考虑负数及前导0。提供的C++代码实现通过读入字符串,反转数字顺序并处理符号和前导0。**
31 0
|
5月前
|
C++
【洛谷 P1044】[NOIP2003 普及组] 栈 题解(递归+记忆化搜索)
**NOIP2003普及组栈问题**:给定操作数序列1到n,仅允许push(进栈)和pop(出栈)操作。目标是计算所有可能的输出序列总数。输入包含一个整数n(1≤n≤18)。示例输入3,输出5。当队列空时返回1,栈空则只能入栈,栈非空时可入栈或出栈。AC C++代码利用记忆化搜索求解。
75 1
|
5月前
|
C++
【洛谷 P1075】[NOIP2012 普及组] 质因数分解 题解(判断质数)
NOIP2012普及组题目,给定合数$n$由两个不同质数乘积组成,求较大质数。输入一个正整数$n$,输出较大质因子。例如输入21,输出7。代码使用C++,通过循环和质数判断找到能整除$n$的质数,再求另一个质数,并输出较大者。
64 0
|
5月前
【洛谷 P1909】[NOIP2016 普及组] 买铅笔 题解(打擂台法)
**摘要:** P老师需买$n$支铅笔作礼物,商店有3种包装(数量、价格不等),不能拆包。目标是最少花费。输入包括$n$和每种包装的详情,输出最小花费。样例展示最优选择过程。代码使用打擂台法求解,读入$n$和包装信息,计算每种包装的最小花费,取最小值输出。
57 0
|
5月前
|
机器学习/深度学习 人工智能
【洛谷 P1028】[NOIP2001 普及组] 数的计算 题解(递推)
在NOIP2001普及组的数的计算题目中,给定自然数`n`,需构造遵循特定规则的合法数列。合法序列始于`n`,新元素不超过前一项的一半。任务是找出所有这样的数列数量。例如,当`n=6`时,合法序列包括`6`, `6,1`, `6,2`, `6,3`, `6,2,1`, `6,3,1`。程序通过动态规划求解,当`i`为奇数时,`a[i] = a[i - 1]`;为偶数时,`a[i] = a[i - 1] + a[i / 2]`。代码中预处理数组`a`并输出`a[n]`作为答案。输入`n`后,程序直接计算并打印合法数列个数。
61 0
|
5月前
【洛谷 P1088】[NOIP2004 普及组] 火星人 题解(全排列+向量)
**火星人问题摘要:** NOIP2004普及组竞赛中的题目,涉及火星人用手指的排列表示数字。人类需计算火星人数字与给定数值之和的新排列。给定火星人手指数N(≤10000),加上的数M(≤100),以及初始排列,要求输出新排列。30%的数据中N≤15,60%的数据中N≤50。使用`next_permutation`函数找到第M个排列。样例:N=5, M=3, 初始排列1 2 3 4 5,输出1 2 4 5 3。
45 0
|
5月前
【洛谷 P2669】[NOIP2015 普及组] 金币 题解(循环)
`NOIP2015`普及组题目,骑士按周期领金币:第一天1枚,随后$n$天每天$n$枚,然后$n+1$天每天$n+1$枚。给定天数$k$,求总金币数。输入$k$,输出金币总数。样例输入6,输出14;输入1000,输出29820。代码使用循环和变量控制周期,累计金币数。
105 0
|
5月前
【洛谷 P1093】[NOIP2007 普及组] 奖学金 题解(结构体排序)
**NOIP2007普及组奖学金问题**:根据学生语文、数学、英语三科成绩计算总分并排序。若总分相同,按语文成绩高者优先,再相同则学号小者靠前。程序需输出前5名学生的学号和总分。输入包括学生人数`n`和每人的三科成绩,输出为5行结果。示例输入和输出已给出,代码通过定义结构体和自定义比较器实现排序。
36 0
|
5月前
|
机器学习/深度学习 存储
【洛谷 P1028】[NOIP2001 普及组] 数的计算 题解(递归)
**NOIP2001普及组数的计算**:给定自然数\( n \),构造数列,新数不超过序列最后一项一半。求合法数列个数。输入\( n \)(\(1 \leq n \leq 10^3\))。样例:输入6,输出6。递归解决,代码中定义函数`f`实现递归计算,总和存储在`cnt`中,最后输出。
51 0