【调度算法】快速非支配排序算法

简介: 【调度算法】快速非支配排序算法

这段代码实现的是快速非支配排序算法(Fast Non-dominated Sorting Algorithm)。

算法输入和输出:

这个函数的输入是两个列表 values1values2,分别表示多目标优化问题中每个解在两个目标函数下的取值。输入的两个列表应该具有相同长度,即每个解在两个目标函数下均有取值。

这个函数的输出是一个二维列表 front,其中包含 Pareto 前沿中每层非支配解的索引。具体而言,front[i] 表示第 i 层 Pareto 前沿中非支配解的索引列表。前沿的层数不确定,因此 front 列表中的子列表数量也不确定,需要根据具体的解集确定。每个非支配解只会出现在其中的一个 Pareto 前沿层级中。

举个例子,如果返回结果是 [[1, 4], [0, 3], [2]],表示在多目标优化问题中存在三个 Pareto 前沿层级。其中第一层包含解索引 1 和 4,第二层包含解索引 0 和 3,第三层包含解索引 2。

算法思路:

快速非支配排序算法是一种用于多目标优化问题的非支配解搜索算法。所谓“非支配解”指的是在多个优化目标下,无法找到一个解集中的解,比这个解更好。

具体实现过程:

首先,算法输入两个向量 values1 和 values2,对于其中的每一个解 p,在 values1 和 values2 上进行比较寻找支配解 q,如果 p 被 q 支配,那么就将 p 加入到 q 的被支配集合 S[q] 中。同时记录下 q 被支配的次数,即 n[q],表示有多少个解与 q 相比,更优秀或者等价。如果一个解 p 的 n[p] 为 0,那么它就是一个非支配解,将其放入 Pareto 前沿的第一层 front[0] 中。

接下来,将 front[0] 中的所有非支配解从解集中删除,并将其加入到 Pareto 前沿的列表 front 中。循环处理直到没有解可以放入前沿。

最后,返回计算得到的 Pareto 前沿集合 front,其中的元素是按照被支配的关系排列的。

python代码:

def fast_non_dominated_sort(values1, values2):
    # 初始化 S, front, n 和 rank 列表
    S = [[] for i in range(0, len(values1))]  # 记录每个解的被支配解集合
    front = [[]]  # 记录 Pareto 前沿层级
    n = [0 for i in range(0, len(values1))]  # 记录每个解被支配的次数
    rank = [0 for i in range(0, len(values1))]  # 记录每个解所处的 Pareto 前沿层级
    # 对每个解计算被支配解集合 S 和支配该解的次数 n
    for p in range(0, len(values1)):
        S[p] = []
        n[p] = 0
        for q in range(0, len(values1)):
            if (values1[p] > values1[q] and values2[p] > values2[q]) or (
                    values1[p] >= values1[q] and values2[p] > values2[q]) or (
                    values1[p] > values1[q] and values2[p] >= values2[q]):
                if q not in S[p]:
                    S[p].append(q)
            elif (values1[q] > values1[p] and values2[q] > values2[p]) or (
                    values1[q] >= values1[p] and values2[q] > values2[p]) or (
                    values1[q] > values1[p] and values2[q] >= values2[p]):
                n[p] = n[p] + 1
        # 如果一个解没有被任何其他解支配,则将其归为 Pareto 前沿的第一层
        if n[p] == 0:
            rank[p] = 0
            if p not in front[0]:
                front[0].append(p)
    # 循环计算 Pareto 前沿集合
    i = 0
    while (front[i] != []):
        Q = []
        for p in front[i]:
            # 遍历被支配解集合 S,更新其 n 值
            for q in S[p]:
                n[q] = n[q] - 1
                # 如果某个解 q 不被其他解支配,则将其归为下一层 Pareto 前沿
                if (n[q] == 0):
                    rank[q] = i + 1
                    if q not in Q:
                        Q.append(q)
        i = i + 1
        # 将下一层 Pareto 前沿加入到 front 中
        front.append(Q)
    # 删除最后一个空元素
    del front[len(front) - 1]
    # 返回 Pareto 前沿集合
    return front

用例测试:

假设有以下输入:

values1 = [5, 2, 9, 3, 7, 4]
values2 = [6, 4, 8, 2, 5, 3]

那么根据该测试用例,函数的返回结果应该是:

[[2], [0, 4], [1, 5], [3]]

解释一下返回结果的含义:返回列表中的第一个子列表 [2] 表示 Pareto 前沿的第一层,其中的解索引是 2 。这表示在给定的输入中,解 2 是非支配解且无法被其他解支配。返回列表中的第二个子列表 [0, 4] 表示 Pareto 前沿的第二层,其中的解索引分别是 0 和 4。这表示在给定的输入中,解 2 支配解 0和 4 ,解 0和 4 之间是非支配解。返回列表中的第三个子列表 [1, 5] 表示 Pareto 前沿的第三层,其中的解索引分别是 1 和 5。这表示在给定的输入中,解 0 和解 4 支配解 1和 5 ,解 1 和 5 之间是非支配解。其余类推。

目录
相关文章
|
1月前
|
算法 调度 UED
探索操作系统的心脏:调度算法的奥秘与影响
【10月更文挑战第9天】 本文深入探讨了操作系统中至关重要的组件——调度算法,它如同人体的心脏,维持着系统资源的有序流动和任务的高效执行。我们将揭开调度算法的神秘面纱,从基本概念到实际应用,全面剖析其在操作系统中的核心地位,以及如何通过优化调度算法来提升系统性能。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
12天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
14天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
47 4
|
15天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
1月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
25 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
20天前
|
算法 大数据 Linux
深入理解操作系统之进程调度算法
【10月更文挑战第24天】本文旨在通过浅显易懂的语言,带领读者深入了解操作系统中的进程调度算法。我们将从进程的基本概念出发,逐步解析进程调度的目的、重要性以及常见的几种调度算法。文章将通过比喻和实例,使复杂的技术内容变得生动有趣,帮助读者建立对操作系统进程调度机制的清晰认识。最后,我们还将探讨这些调度算法在现代操作系统中的应用和发展趋势。
|
1月前
|
算法 调度 UED
深入理解操作系统的进程调度算法
【10月更文挑战第7天】在操作系统的心脏——内核中,进程调度算法扮演着至关重要的角色。它不仅影响系统的性能和用户体验,还直接关系到资源的合理分配。本文将通过浅显易懂的语言和生动的比喻,带你一探进程调度的秘密花园,从最简单的先来先服务到复杂的多级反馈队列,我们将一起见证算法如何在微观世界里编织宏观世界的和谐乐章。
|
1月前
|
存储 算法 固态存储
IO调度算法
【10月更文挑战第5天】IO调度算法
38 3
|
1月前
|
存储 算法 固态存储
IO调度算法
【10月更文挑战第5天】IO调度算法
41 2