鸢尾花数据集分类问题(1)

简介: 鸢尾花数据集分类问题

导入可能会用到的包:

from sklearn import datasets
import numpy as np
import pandas as pd
import tensorflow as tf
from matplotlib import pyplot as plt

1.数据导入

sklearn包datasets 读入数据集:

x_data = datasets.load_iris().data   # 返回iris数据集所有输入特征
y_data = datasets.load_iris().target # 返回iris数据集所有标签
print(x_data)
print(y_data)
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 [4.6 3.1 1.5 0.2]
 [5.  3.6 1.4 0.2]
 [5.4 3.9 1.7 0.4]
 [4.6 3.4 1.4 0.3]
 [5.  3.4 1.5 0.2]
 [4.4 2.9 1.4 0.2]
 [4.9 3.1 1.5 0.1]
 [5.4 3.7 1.5 0.2]
 [4.8 3.4 1.6 0.2]
 [4.8 3.  1.4 0.1]
 [4.3 3.  1.1 0.1]
 [5.8 4.  1.2 0.2]
 [5.7 4.4 1.5 0.4]
 [5.4 3.9 1.3 0.4]
 [5.1 3.5 1.4 0.3]
 [5.7 3.8 1.7 0.3]
 [5.1 3.8 1.5 0.3]
 [5.4 3.4 1.7 0.2]
 [5.1 3.7 1.5 0.4]
 [4.6 3.6 1.  0.2]
 [5.1 3.3 1.7 0.5]
 [4.8 3.4 1.9 0.2]
 [5.  3.  1.6 0.2]
 [5.  3.4 1.6 0.4]
 [5.2 3.5 1.5 0.2]
 [5.2 3.4 1.4 0.2]
 [4.7 3.2 1.6 0.2]
 [4.8 3.1 1.6 0.2]
 [5.4 3.4 1.5 0.4]
 [5.2 4.1 1.5 0.1]
 [5.5 4.2 1.4 0.2]
 [4.9 3.1 1.5 0.2]
 [5.  3.2 1.2 0.2]
 [5.5 3.5 1.3 0.2]
 [4.9 3.6 1.4 0.1]
 [4.4 3.  1.3 0.2]
 [5.1 3.4 1.5 0.2]
 [5.  3.5 1.3 0.3]
 [4.5 2.3 1.3 0.3]
 [4.4 3.2 1.3 0.2]
 [5.  3.5 1.6 0.6]
 [5.1 3.8 1.9 0.4]
 [4.8 3.  1.4 0.3]
 [5.1 3.8 1.6 0.2]
 [4.6 3.2 1.4 0.2]
 [5.3 3.7 1.5 0.2]
 [5.  3.3 1.4 0.2]
 [7.  3.2 4.7 1.4]
 [6.4 3.2 4.5 1.5]
 [6.9 3.1 4.9 1.5]
 [5.5 2.3 4.  1.3]
 [6.5 2.8 4.6 1.5]
 [5.7 2.8 4.5 1.3]
 [6.3 3.3 4.7 1.6]
 [4.9 2.4 3.3 1. ]
 [6.6 2.9 4.6 1.3]
 [5.2 2.7 3.9 1.4]
 [5.  2.  3.5 1. ]
 [5.9 3.  4.2 1.5]
 [6.  2.2 4.  1. ]
 [6.1 2.9 4.7 1.4]
 [5.6 2.9 3.6 1.3]
 [6.7 3.1 4.4 1.4]
 [5.6 3.  4.5 1.5]
 [5.8 2.7 4.1 1. ]
 [6.2 2.2 4.5 1.5]
 [5.6 2.5 3.9 1.1]
 [5.9 3.2 4.8 1.8]
 [6.1 2.8 4.  1.3]
 [6.3 2.5 4.9 1.5]
 [6.1 2.8 4.7 1.2]
 [6.4 2.9 4.3 1.3]
 [6.6 3.  4.4 1.4]
 [6.8 2.8 4.8 1.4]
 [6.7 3.  5.  1.7]
 [6.  2.9 4.5 1.5]
 [5.7 2.6 3.5 1. ]
 [5.5 2.4 3.8 1.1]
 [5.5 2.4 3.7 1. ]
 [5.8 2.7 3.9 1.2]
 [6.  2.7 5.1 1.6]
 [5.4 3.  4.5 1.5]
 [6.  3.4 4.5 1.6]
 [6.7 3.1 4.7 1.5]
 [6.3 2.3 4.4 1.3]
 [5.6 3.  4.1 1.3]
 [5.5 2.5 4.  1.3]
 [5.5 2.6 4.4 1.2]
 [6.1 3.  4.6 1.4]
 [5.8 2.6 4.  1.2]
 [5.  2.3 3.3 1. ]
 [5.6 2.7 4.2 1.3]
 [5.7 3.  4.2 1.2]
 [5.7 2.9 4.2 1.3]
 [6.2 2.9 4.3 1.3]
 [5.1 2.5 3.  1.1]
 [5.7 2.8 4.1 1.3]
 [6.3 3.3 6.  2.5]
 [5.8 2.7 5.1 1.9]
 [7.1 3.  5.9 2.1]
 [6.3 2.9 5.6 1.8]
 [6.5 3.  5.8 2.2]
 [7.6 3.  6.6 2.1]
 [4.9 2.5 4.5 1.7]
 [7.3 2.9 6.3 1.8]
 [6.7 2.5 5.8 1.8]
 [7.2 3.6 6.1 2.5]
 [6.5 3.2 5.1 2. ]
 [6.4 2.7 5.3 1.9]
 [6.8 3.  5.5 2.1]
 [5.7 2.5 5.  2. ]
 [5.8 2.8 5.1 2.4]
 [6.4 3.2 5.3 2.3]
 [6.5 3.  5.5 1.8]
 [7.7 3.8 6.7 2.2]
 [7.7 2.6 6.9 2.3]
 [6.  2.2 5.  1.5]
 [6.9 3.2 5.7 2.3]
 [5.6 2.8 4.9 2. ]
 [7.7 2.8 6.7 2. ]
 [6.3 2.7 4.9 1.8]
 [6.7 3.3 5.7 2.1]
 [7.2 3.2 6.  1.8]
 [6.2 2.8 4.8 1.8]
 [6.1 3.  4.9 1.8]
 [6.4 2.8 5.6 2.1]
 [7.2 3.  5.8 1.6]
 [7.4 2.8 6.1 1.9]
 [7.9 3.8 6.4 2. ]
 [6.4 2.8 5.6 2.2]
 [6.3 2.8 5.1 1.5]
 [6.1 2.6 5.6 1.4]
 [7.7 3.  6.1 2.3]
 [6.3 3.4 5.6 2.4]
 [6.4 3.1 5.5 1.8]
 [6.  3.  4.8 1.8]
 [6.9 3.1 5.4 2.1]
 [6.7 3.1 5.6 2.4]
 [6.9 3.1 5.1 2.3]
 [5.8 2.7 5.1 1.9]
 [6.8 3.2 5.9 2.3]
 [6.7 3.3 5.7 2.5]
 [6.7 3.  5.2 2.3]
 [6.3 2.5 5.  1.9]
 [6.5 3.  5.2 2. ]
 [6.2 3.4 5.4 2.3]
 [5.9 3.  5.1 1.8]]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

鸢尾花数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。

属性,即输出的x_data值:

Sepal.Length(花萼长度),单位是cm;

Sepal.Width(花萼宽度),单位是cm;

Petal.Length(花瓣长度),单位是cm;

Petal.Width(花瓣宽度),单位是cm;

种类,即输出的y_data值:

Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾),以及Iris Virginica(维吉尼亚鸢尾)。

将x_data、y_data由nDarray数据类型转换为DataFrame数据类型,并添加表头:

x_data_list = pd.DataFrame(x_data,columns=['花萼长度','花萼宽度','花瓣长度','花瓣宽度']) # 添加列标签
x_data_list['类别'] = pd.DataFrame(y_data)   # 新增一列,列标签为类别,数据为y_data
pd.set_option('display.unicode.east_asian_width',True)  # 设置列名对齐
print(x_data_list)
花萼长度  花萼宽度  花瓣长度  花瓣宽度  类别
0         5.1       3.5       1.4       0.2     0
1         4.9       3.0       1.4       0.2     0
2         4.7       3.2       1.3       0.2     0
3         4.6       3.1       1.5       0.2     0
4         5.0       3.6       1.4       0.2     0
..        ...       ...       ...       ...   ...
145       6.7       3.0       5.2       2.3     2
146       6.3       2.5       5.0       1.9     2
147       6.5       3.0       5.2       2.0     2
148       6.2       3.4       5.4       2.3     2
149       5.9       3.0       5.1       1.8     2
[150 rows x 5 columns]


鸢尾花数据集分类问题(2)https://developer.aliyun.com/article/1540969

目录
相关文章
|
JSON JavaScript 定位技术
echarts:从github及其镜像下载china.js和china.json
echarts:从github及其镜像下载china.js和china.json
5518 0
|
12月前
|
编译器 API 定位技术
API和SDK的区别
API 和 SDK 的区别在于:API 是一组定义了软件组件之间交互规范的接口,用于实现不同软件组件之间的通信;而 SDK 是一个全面的工具集合,包含 API、编译器、调试器、文档等,用于特定平台的应用程序开发。SDK 范围更广,内容更丰富,更具体和具象化,适合复杂的开发需求;API 则更加抽象,侧重于功能的定义和调用方式。
|
安全 Java 数据安全/隐私保护
基于SpringBoot+Spring Security+Jpa的校园图书管理系统
本文介绍了一个基于SpringBoot、Spring Security和JPA开发的校园图书管理系统,包括系统的核心控制器`LoginController`的代码实现,该控制器处理用户登录、注销、密码更新、角色管理等功能,并提供了系统初始化测试数据的方法。
184 0
基于SpringBoot+Spring Security+Jpa的校园图书管理系统
|
12月前
域名备案
阿里云账号实名认证与域名实名认证可以不一致,备案针对域名实名认证。一个阿里云账号只能有一个备案主体,且主体只能在一个账号上。域名、服务器和备案主体所在账号可以不同,但可通过服务器账号生成备案服务码授权给备案主体账号进行备案。
551 3
|
Shell 网络安全 开发工具
【已解决】SSL certificate problem: self signed certificate
SSL certificate problem: self signed certificate
2104 2
|
11月前
|
安全 算法 测试技术
网络防线的构筑者:探索网络安全漏洞与加密技术
【10月更文挑战第31天】在数字时代的浪潮中,信息安全成为我们不可忽视的盾牌。本文将深入浅出地探讨网络安全的核心问题——安全漏洞与加密技术,并强调提升个人和组织的安全意识的重要性。我们将从基础概念出发,逐步深入到防御策略、加密算法,最终聚焦于如何通过教育和实践来提高整个社会的安全防范意识。文章旨在为非专业读者提供一扇了解网络安全世界的窗口,同时为专业人士提供实用的知识分享和思考启发。
|
自然语言处理 语音技术 开发者
ChatTTS超真实自然的语音合成模型
ChatTTS超真实自然的语音合成模型
408 3
|
安全 Ubuntu Linux
Ubuntu解密:Root账户登录问题一网打尽
Ubuntu解密:Root账户登录问题一网打尽
359 1
|
存储 应用服务中间件 开发者
SpringMVC @RequestHeader @CookieValue 处理获取请求参数的乱码问题
SpringMVC @RequestHeader @CookieValue 处理获取请求参数的乱码问题
279 0
|
小程序
微信小程序实现一个todolist这样的小demo
微信小程序实现一个todolist这样的小demo