EMR Serverless Spark体验

简介: EMR Serverless Spark体验

作为一名Python程序员,我天天跟数据打交道,数据一多,传统的处理方式就有点儿力不从心。EMR Serverless Spark的出现,对我来说就像找到了一把屠龙刀,终于可以大干一场了。

第一章:安装与配置,轻松上手

安装配置这块,阿里云的文档写得是真清楚,跟着步骤一步步来,一点儿也不费劲。不过,一开始找入口的时候,我确实绕了点弯路,但熟悉了之后,就轻车熟路了。

image.png

第二章:数据处理实践,大展拳脚

  1. 数据接入:我试了试从OSS拉数据,速度嗖嗖的,比我那破笔记本快多了,简直就像坐了火箭。
  2. 任务开发:用PySpark写任务,熟悉的感觉,就像写Python脚本一样顺手。我写了一个处理日志数据的脚本,运行起来飞快,效果杠杠的。
  3. 作业调度:设置了几个定时任务,EMR Serverless Spark的调度器稳得一批,从没掉过链子,让我省心不少。

image.png

第三章:性能与稳定性,稳如老狗

性能这块,EMR Serverless Spark真是没得说,比我之前用过的那些破烂集群强多了。稳定性也是杠杠的,跑了一个月,稳如老狗,从来没给我掉过链子。

第四章:运维体验,省事省心

以前运维Spark集群,那叫一个心累。现在好了,全托管,啥也不用管,省了不少心。就像找了个贴心管家,啥事都给你安排得明明白白。

第五章:成本与收益,精打细算

按需付费,这模式我喜欢。不像以前,还得自己买机器,成本高得吓人。现在,用多少花多少,收益也上来了,这账算得门儿清。

第六章:产品功能体验,面面俱到

  1. 接入便捷性:接入数据源挺方便,支持多种数据格式,这点做得不错,让我少操了不少心。
  2. 数据开发体验:写Spark任务跟写Python一样,开发效率高,这点深得我心。我还尝试了一些复杂的数据处理逻辑,都能轻松应对。
  3. 弹性伸缩:资源自动扩展,用起来很灵活。我试了试在高负载下的表现,扩展得很及时,没有出现性能瓶颈。
    image.png

第七章:改进建议

  1. 问题诊断:有时候任务挂了,找原因得费点劲,希望日志能更详细些。最好能有个智能诊断系统,一键定位问题所在。
  2. 自动化功能:要是能自动优化查询计划,自动调整资源分配,那就更完美了。我尝试了一些复杂的查询,如果能自动优化,效率会更高。

第八章:联动效应,打造数据处理闭环

EMR Serverless Spark跟阿里云的其他产品,比如MaxCompute、DataWorks,如果能联动起来,那就真能打造个数据处理的闭环了。我试了试和DataWorks的集成,确实方便不少,如果能进一步扩展,那就更牛了。

image.png

第九章:性能不错

EMR Serverless Spark这货,用起来真挺爽。性能好,稳定性高,运维省事,成本还低。问题诊断这块儿还得加强。总之,值得一试。

第十章:总结发言

1、EMR Serverless Spark服务最佳实践测评:

我最喜欢的就是它能和各种数据源结合,不管是用户行为分析还是大规模数据处理,都能轻松应对。就像写Python脚本一样,我只需要把数据扔进去,它就能帮我分析出有价值的信息。
稳定性和性能方面,EMR Serverless Spark表现得相当出色。相比其他引擎和自建Spark集群,它省去了一大堆运维的麻烦,让我能更专注于数据分析本身。
作为全托管的服务,EMR Serverless Spark在成本和收益上也给了我很大的惊喜。它按需付费,不用自己维护硬件,成本更低;而且计算效率高,收益自然也就上来了。

2、EMR Serverless Spark服务体验评测:

体验过程中,产品内引导和文档帮助做得挺到位,让我很快就上手了。但对于一些高级功能,我觉得还可以增加更多的示例和教程。
产品功能基本满足了我的预期,接入便捷,数据开发体验流畅,弹性伸缩也很灵活。不过,我觉得在一些特定业务场景下,还可以进一步优化。
对于业务场景,我觉得EMR Serverless Spark还可以增加一些自动化的功能,比如自动优化查询计划,自动调整资源分配等。
EMR Serverless Spark和其他产品的联动组合可能性很大,比如和阿里云的数据分析产品、数据可视化工具等结合,打造一个完整的数据处理和分析解决方案。

3、LAP引擎的对比测评:

我之前用过一些Spark引擎,商业的和开源的都有。EMR Serverless Spark在满足业务需求方面,功能全面,性能出色,可扩展性强,多协议支持,效率也很高。
我觉得EMR Serverless Spark好的地方在于它的全托管特性,省去了运维的麻烦;而且它的多租户隔离和安全性也做得很好。不过,在问题诊断方面,我觉得还可以进一步优化,比如提供更详细的日志和监控数据。

EMR Serverless Spark作为一款云原生的Serverless Spark计算产品,它在数据处理和分析方面给了我很大的帮助。它简化了数据处理的流程,提高了效率,降低了成本,让我能更专注于数据的价值提炼。有兴趣的话,不妨来体验一下,看看它能不能成为你数据处理的得力助手。

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
DataWorks 数据挖掘 Serverless
阿里云EMR Serverless StarRocks 内容合集
阿里云 EMR StarRocks 提供存算分离架构,支持实时湖仓分析,适用于多种 OLAP 场景。结合 Paimon 与 Flink,助力企业高效处理海量数据,广泛应用于游戏、教育、生活服务等领域,显著提升数据分析效率与业务响应速度。
429 0
|
8月前
|
人工智能 分布式计算 DataWorks
一体系数据平台的进化:基于阿里云 EMR Serverless Spark 的持续演进
本文介绍了一体系汽配供应链平台如何借助阿里云EMR Serverless Spark实现从传统Hadoop平台向云原生架构的迁移。通过融合高质量零部件供应与创新互联网科技,一体系利用EMR Serverless Spark和DataWorks构建高效数据分析体系,解决大规模数据处理瓶颈。方案涵盖实时数据集成、Lakehouse搭建、数仓分层设计及BI/ML应用支持,显著提升数据处理性能与业务响应速度,降低运维成本,为数字化转型奠定基础。最终实现研发效率提升、运维压力减轻,并推动AI技术深度整合,迈向智能化云原生数据平台。
272 4
|
8月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
425 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
1051 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
11月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
571 79
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
308 0
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
293 0
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
348 0
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
609 6