人工智能大模型——零样本提示

简介: **零样本提示**是向LLM如ChatGPT提问时不提供示例的方式,适用于目标明确、问题简单和答案固定的场景。例如,翻译请求或简单算术问题。在实践中,清晰、简洁的提示能获得更好响应。案例展示包括翻译和定义解释,ChatGPT能有效回应。理解其应用和技巧的同时,也应注意其对复杂情境理解的限制。

零样本提示是与少样本提示相对应的一种提示词编写方式,其含义是指在编写提示词过程中,并未给 LLM 提供任何的相关示例。

零样本提示是新手使用 ChatGPT 最常规的提示方式,也是最好掌握的一种提示方式,同时也是其他所有高级提示技术的基础。

应用场景

我一直建议在写提示词的时候遵循一个原理,就是把大模型当成“人”去沟通去交流。在与人沟通过程中,我们会发现描述越清晰,沟通越顺利。同时,问题越简单,对方也越容易理解。

那么零样本提示的应用场景主要为哪些:

  1. 目标明确,比如请帮我针对以下这句话进行翻译。
  2. 问题简单,比如1+1=?。
  3. 不需要场景示例,答案是一个固定答案,比如清朝统治时间为多久?

以上这种类型的场景,更适用于简单且易理解的零样本提示。

实战案例

界面化操作

进入 ChatGPT 界面,进行零样本提示词实战。

  1. 简单的翻译场景:
请帮我针对以下这段话翻译为英文:
你好,我是霍格沃兹测试开发学社的一名学生,我擅长接口测试。

ChatGPT 的回复为

Hello, I am a student from the Hogwarts Test Development Learning Society, and I specialize in interface testing.
  1. 问题清晰明确的场景:
测试人社区是个什么社区?

ChatGPT 的回复为

测试人社区(Testers Community)是一个汇集了各种测试人员(包括软件测试工程师、质量保证工程师等)的社区。在这个社区中,测试人员可以分享经验、交流技术、提出问题、解决挑战,并且共同学习和成长。测试人社区通常通过在线论坛、社交媒体群组、线下聚会等形式来进行交流和互动,旨在促进测试领域的发展和进步。

总结

  1. 理解什么是零样本提示。
  2. 理解零样本提示的应用场景。
  3. 理解零样本提示的提示词技巧。
  4. 理解零样本提示的局限性。
相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
【服装识别系统】图像识别+Python+人工智能+深度学习+算法模型+TensorFlow
服装识别系统,本系统作为图像识别方面的一个典型应用,使用Python作为主要编程语言,并通过TensorFlow搭建ResNet50卷积神经算法网络模型,通过对18种不同的服装('黑色连衣裙', '黑色衬衫', '黑色鞋子', '黑色短裤', '蓝色连衣裙', '蓝色衬衫', '蓝色鞋子', '蓝色短裤', '棕色鞋子', '棕色短裤', '绿色衬衫', '绿色鞋子', '绿色短裤', '红色连衣裙', '红色鞋子', '白色连衣裙', '白色鞋子', '白色短裤')数据集进行训练,最后得到一个识别精度较高的H5格式模型文件,然后基于Django搭建Web网页端可视化操作界面,实现用户在界面中
36 1
【服装识别系统】图像识别+Python+人工智能+深度学习+算法模型+TensorFlow
|
28天前
|
人工智能 自然语言处理 API
人工智能大模型之开源大语言模型汇总(国内外开源项目模型汇总)
人工智能大模型之开源大语言模型汇总(国内外开源项目模型汇总)
人工智能大模型之开源大语言模型汇总(国内外开源项目模型汇总)
|
19天前
|
机器学习/深度学习 消息中间件 人工智能
人工智能平台PAI产品使用合集之vLLM是否支持模型长度扩展
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
19天前
|
机器学习/深度学习 人工智能 Java
人工智能平台PAI产品使用合集之已经通过自定义镜像部署了一个模型,想要上传并导入其他模型,该如何操作
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
19天前
|
机器学习/深度学习 数据采集 人工智能
人工智能平台PAI产品使用合集之在使用ARIMA模型预测时,目标是预测输出12个值,但只打印了5个值,是什么原因
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
24天前
|
机器学习/深度学习 数据采集 人工智能
人工智能:构建自定义机器学习模型的步骤与技巧
【6月更文挑战第25天】构建自定义机器学习模型涉及明确问题、数据收集预处理、特征工程、模型选择训练、评估优化及部署监控。关键技巧包括选择适配的算法、重视数据预处理、精巧的特征工程、有效评估优化和适时的模型更新。通过这些步骤和技巧,可提升模型性能与泛化能力。
|
1月前
|
人工智能 自然语言处理 机器人
【AIGC】大型语言模型在人工智能规划领域模型生成中的探索
【AIGC】大型语言模型在人工智能规划领域模型生成中的探索
53 6
|
29天前
|
传感器 机器学习/深度学习 人工智能
多模态大模型代表了人工智能领域的新一代技术范式
多模态大模型代表了人工智能领域的新一代技术范式
24 2
|
13天前
|
机器学习/深度学习 人工智能 数据可视化
使用Python实现深度学习模型:模型解释与可解释人工智能
【7月更文挑战第6天】 使用Python实现深度学习模型:模型解释与可解释人工智能
16 0
|
17天前
|
机器学习/深度学习 数据采集 人工智能
AI(人工智能)大模型:智能新突破与挑战
在人工智能的发展历程中,我们始终追求的是大模型的智能化。这包括对复杂环境的理解力、面对未知情况的泛化能力,以及在各种情况下的适应性。这些因素是衡量一个智能模型优秀与否的关键。而提升大模型在这些方面的表现,不仅能够推动人工智能的发展,更能够拓宽其应用的范围。因此,寻找并采取有效的策略,使大模型走向更加聪明,是我们在未来人工智能发展中必须要面对和解决的重要问题。
15 0