人工智能大模型——零样本提示

简介: **零样本提示**是向LLM如ChatGPT提问时不提供示例的方式,适用于目标明确、问题简单和答案固定的场景。例如,翻译请求或简单算术问题。在实践中,清晰、简洁的提示能获得更好响应。案例展示包括翻译和定义解释,ChatGPT能有效回应。理解其应用和技巧的同时,也应注意其对复杂情境理解的限制。

零样本提示是与少样本提示相对应的一种提示词编写方式,其含义是指在编写提示词过程中,并未给 LLM 提供任何的相关示例。

零样本提示是新手使用 ChatGPT 最常规的提示方式,也是最好掌握的一种提示方式,同时也是其他所有高级提示技术的基础。

应用场景

我一直建议在写提示词的时候遵循一个原理,就是把大模型当成“人”去沟通去交流。在与人沟通过程中,我们会发现描述越清晰,沟通越顺利。同时,问题越简单,对方也越容易理解。

那么零样本提示的应用场景主要为哪些:

  1. 目标明确,比如请帮我针对以下这句话进行翻译。
  2. 问题简单,比如1+1=?。
  3. 不需要场景示例,答案是一个固定答案,比如清朝统治时间为多久?

以上这种类型的场景,更适用于简单且易理解的零样本提示。

实战案例

界面化操作

进入 ChatGPT 界面,进行零样本提示词实战。

  1. 简单的翻译场景:
请帮我针对以下这段话翻译为英文:
你好,我是霍格沃兹测试开发学社的一名学生,我擅长接口测试。

ChatGPT 的回复为

Hello, I am a student from the Hogwarts Test Development Learning Society, and I specialize in interface testing.
  1. 问题清晰明确的场景:
测试人社区是个什么社区?

ChatGPT 的回复为

测试人社区(Testers Community)是一个汇集了各种测试人员(包括软件测试工程师、质量保证工程师等)的社区。在这个社区中,测试人员可以分享经验、交流技术、提出问题、解决挑战,并且共同学习和成长。测试人社区通常通过在线论坛、社交媒体群组、线下聚会等形式来进行交流和互动,旨在促进测试领域的发展和进步。

总结

  1. 理解什么是零样本提示。
  2. 理解零样本提示的应用场景。
  3. 理解零样本提示的提示词技巧。
  4. 理解零样本提示的局限性。
相关文章
|
23天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
44 12
|
1月前
|
机器学习/深度学习 人工智能 机器人
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
推荐一些关于将图形学先验知识融入人工智能模型的研究论文
|
1月前
|
机器学习/深度学习 人工智能 图形学
如何将图形学先验知识融入到人工智能模型中?
如何将图形学先验知识融入到人工智能模型中?
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
97 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
95 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
5月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI操作报错合集之任务重启后出现模型拆分报错,该怎么办
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略
|
1月前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
87 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与模型知识库在移动医疗产品中的落地应用
在现代医疗体系中,通义千问大模型与MaxKB知识库的结合,为医生和患者提供了前所未有的支持与便利。该系统通过实时问答、临床决策辅助、个性化学习和患者教育等功能,显著提升了诊疗效率和患者满意度。实际应用如乐问医学APP展示了其强大优势,但数据隐私和安全问题仍需关注。
61 0
|
3月前
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
124 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别