浏览器的前进、后退功能,我想你肯定很熟悉吧?
当你依次访问完一串页面 a-b-c 之后,点击浏览器的后退按钮,就可以查看之前浏览过的页面b 和 a。当你后退到页面 a,点击前进按钮,就可以重新查看页面 b 和 c。但是,如果你后退到页面 b 后,点击了新的页面 d,那就无法再通过前进、后退功能查看页面 c 了。
假设你是开发工程师,你会如何实现这个功能呢?
如何理解“栈”?
关于“栈”,我有一个非常贴切的例子,就是一摞叠在一起的盘子。我们平时放盘子的时候,都是从下往上一个一个放;取的时候,我们也是从上往下一个一个地依次取,不能从中间任意抽出。后进者先出,先进者后出,这就是典型的“栈”结构。
从栈的操作特性上来看,栈是一种“操作受限”的线性表,只允许在一端插入和删除数据。
我第一次接触这种数据结构的时候,就对它存在的意义产生了很大的疑惑。因为我觉得,相比数组和链表,栈带给我的只有限制,并没有任何优势。那我直接使用数组或者链表不就好了吗?为什么还要用这个“操作受限”的“栈”呢?
事实上,从功能上来说,数组或链表确实可以替代栈,但你要知道,特定的数据结构是对特定场景的抽象,而且,数组或链表暴露了太多的操作接口,操作上的确灵活自由,但使用时就比较不可控,自然也就更容易出错。
当某个数据集合只涉及在一端插入和删除数据,并且满足后进先出、先进后出的特性,我们就应该首选“栈”这种数据结构。
如何实现一个“栈”?
从刚才栈的定义里,我们可以看出,栈主要包含两个操作,入栈和出栈,也就是在栈顶插入一个数据和从栈顶删除一个数据。理解了栈的定义之后,我们来看一看如何用代码实现一个栈。
实际上,栈既可以用数组来实现,也可以用链表来实现。用数组实现的栈,我们叫作顺序栈,用链表实现的栈,我们叫作链式栈。
// 基于数组实现的顺序栈 public class ArrayStack { private String[] items; // 数组 private int count; // 栈中元素个数 private int n; // 栈的大小 // 初始化数组,申请一个大小为 n 的数组空间 public ArrayStack(int n) { this.items = new String[n]; this.n = n; this.count = 0; } // 入栈操作 public boolean push(String item) { // 数组空间不够了,直接返回 false,入栈失败。 if (count == n) return false; // 将 item 放到下标为 count 的位置,并且 count 加一 items[count] = item; ++count; return true; } // 出栈操作 public String pop() { // 栈为空,则直接返回 null if (count == 0) return null; // 返回下标为 count-1 的数组元素,并且栈中元素个数 count 减一 String tmp = items[count - 1]; --count; return tmp; } }
不管是顺序栈还是链式栈,我们存储数据只需要一个大小为 n 的数组就够了。在入栈和出栈过程中,只需要一两个临时变量存储空间,所以空间复杂度是 O(1)。
注意,这里存储数据需要一个大小为 n 的数组,并不是说空间复杂度就是 O(n)。因为,这 n 个空间是必须的,无法省掉。所以我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。
空间复杂度分析是不是很简单?时间复杂度也不难。不管是顺序栈还是链式栈,入栈、出栈只涉及栈顶个别数据的操作,所以时间复杂度都是 O(1)。
支持动态扩容的顺序栈
刚才那个基于数组实现的栈,是一个固定大小的栈,也就是说,在初始化栈时需要事先指定栈的大小。当栈满之后,就无法再往栈里添加数据了。尽管链式栈的大小不受限,但要存储 next 指针,内存消耗相对较多。那我们如何基于数组实现一个可以支持动态扩容的栈呢?
你还记得,我们在数组那一节,是如何来实现一个支持动态扩容的数组的吗?当数组空间不够时,我们就重新申请一块更大的内存,将原来数组中数据统统拷贝过去。这样就实现了一个支持动态扩容的数组。
所以,如果要实现一个支持动态扩容的栈,我们只需要底层依赖一个支持动态扩容的数组就可以了。当栈满了之后,我们就申请一个更大的数组,将原来的数据搬移到新数组中。我画了一张图,你可以对照着理解一下。
对于出栈操作来说,我们不会涉及内存的重新申请和数据的搬移,所以出栈的时间复杂度仍然是O(1)。但是,对于入栈操作来说,情况就不一样了。当栈中有空闲空间时,入栈操作的时间复杂度为 O(1)。但当空间不够时,就需要重新申请内存和数据搬移,所以时间复杂度就变成了O(n)。
你应该可以看出来,这 K 次入栈操作,总共涉及了 K 个数据的搬移,以及 K 次 simple-push操作。将 K 个数据搬移均摊到 K 次入栈操作,那每个入栈操作只需要一个数据搬移和一个simple-push 操作。以此类推,入栈操作的均摊时间复杂度就为 O(1)。
通过这个例子的实战分析,也印证了前面讲到的,均摊时间复杂度一般都等于最好情况时间复杂度。因为在大部分情况下,入栈操作的时间复杂度 O 都是 O(1),只有在个别时刻才会退化为O(n),所以把耗时多的入栈操作的时间均摊到其他入栈操作上,平均情况下的耗时就接近O(1)。
栈在函数调用中的应用
前面我讲的都比较偏理论,我们现在来看下,栈在软件工程中的实际应用。栈作为一个比较基础的数据结构,应用场景还是蛮多的。其中,比较经典的一个应用场景就是函数调用栈。
int main() { int a = 1; int ret = 0; int res = 0; ret = add(3, 5); res = a + ret; printf("%d", res); reuturn 0; } int add(int x, int y) { int sum = 0; sum = x + y; return sum; }
从代码中我们可以看出,main() 函数调用了 add() 函数,获取计算结果,并且与临时变量 a 相加,最后打印 res 的值。为了让你清晰地看到这个过程对应的函数栈里出栈、入栈的操作,我画了一张图。图中显示的是,在执行到 add() 函数时,函数调用栈的情况。
栈在表达式求值中的应用
我们再来看栈的另一个常见的应用场景,编译器如何利用栈来实现表达式求值。
编辑
栈在括号匹配中的应用
编辑
解答开篇
好了,我想现在你已经完全理解了栈的概念。我们再回来看看开篇的思考题,如何实现浏览器的前进、后退功能?其实,用两个栈就可以非常完美地解决这个问题。
我们使用两个栈,X 和 Y,我们把首次浏览的页面依次压入栈 X,当点击后退按钮时,再依次从栈 X 中出栈,并将出栈的数据依次放入栈 Y。当我们点击前进按钮时,我们依次从栈 Y 中取出数据,放入栈 X 中。当栈 X 中没有数据时,那就说明没有页面可以继续后退浏览了。当栈 Y 中没有数据,那就说明没有页面可以点击前进按钮浏览了。
比如你顺序查看了 a,b,c 三个页面,我们就依次把 a,b,c 压入栈,这个时候,两个栈的数
据就是这个样子:
当你通过浏览器的后退按钮,从页面 c 后退到页面 a 之后,我们就依次把 c 和 b 从栈 X 中弹出,并且依次放入到栈 Y。这个时候,两个栈的数据就是这个样子:
内容小结
我们来回顾一下今天讲的内容。栈是一种操作受限的数据结构,只支持入栈和出栈操作。后进先出是它最大的特点。栈既可以通过数组实现,也可以通过链表来实现。不管基于数组还是链表,入栈、出栈的时间复杂度都为 O(1)。
课后思考
我们在讲栈的应用时,讲到用函数调用栈来保存临时变量,为什么函数调用要用“栈”来保存临时变量呢?用其他数据结构不行吗?
答:因为函数调用的执行顺序符合后进者先出,先进者后出的特点。比如函数中的局部变量的生命周期的长短是 先定义的生命周期长,后定义的生命周期短;还有函数中调用函数也是这样,先开始执行的函数只有等到内部调用的其他函数执行完毕,该函数才能执行结束。正是由于函数调用的这些特点,根据数据结构是特定应用场景的抽象的原则,我们优先考虑栈结构。
我们都知道,JVM 内存管理中有个“堆栈”的概念。栈内存用来存储局部变量和方法调用,堆内存用来存储 Java 中的对象。那 JVM 里面的“栈”跟我们这里说的“栈”是不是一回事呢?如果不是,那它为什么又叫作“栈”呢?
答:JVM里面的栈和我们这里说的是一回事,被称为方法栈。和前面函数调用的作用是一致的,用来存储方法中的局部变量。