《百炼成金-大金融模型新篇章》––05.问题3:“大模型vs越来越大的模型”,模型sIzE的军备竞赛

简介: 百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。

本文来源于阿里云社区电子书《百炼成金-大金融模型新篇章》


问题 3: “大模型 vs 越来越大的模型”,模型 size 的军备竞赛


OpenAI 的研究者在 2020 年发现,大语言模型也遵循着规模定律(ScalingLaw),模型参数数量的增加常常被看作是提高模型性能的一个关键因素。这导致了一种被业界戏称为“模型参数的军备竞赛”的现象,即科研机构和科技公司不断推出参数量更大、计算需求更高的模型,以追求在特定任务上的最佳性能。然而,这种军备竞赛带来了诸多挑战:


越来越大的模型通常具有更强的学习能力和泛化能力,因为有更多的参数可以捕捉数据中的复杂特征和模式。能够处理更复杂的任务和数据集,通常在各种基准和实际问题上表现更好。随着参数数量的增加,模型通常能够更好地理解语言的细微差别或更精准地识别图像中的对象。

 

但越来越大的模型带来能力提升的同时,也带来了海量的算力消耗,如何根据不同的业务场景选择合适的模型将是一个迫在眉睫的问题?


大模型推理运行时,核心消耗的资源是显存,推理过程中除了要加载对应参数的模型,还与输入输出的参数量有关,输入参数越多显存消耗越大,输出参数量越多模型响应越慢,我们根据一个简单的估算公式,来评估不同业务场景的资源消耗:


大模型推理的总显存占用公式: 𝐼𝑛𝑓𝑒𝑟𝑀𝑒𝑚𝑜𝑟𝑦≈ 1.2∗𝑀𝑜𝑑𝑒𝑙𝑀𝑒𝑚𝑜𝑟𝑦


(详见参考:TransformerInferenceArithmetic|kipply'sblog)


以 72B 参数的模型,在 BF16 精度下(浮点数 2 个字节)


𝐼𝑛𝑓𝑒𝑟𝑀𝑒𝑚𝑜𝑟𝑦≈ 1.2*𝑀𝑜𝑑𝑒𝑙𝑀𝑒𝑚𝑜𝑟𝑦(72 亿 *2)≈ 172.8G


运行一个 72B 的大模型至少需要 3 张 A100(80G),现以企业知识库和智能外呼场景为例进行资源评估:


知识库检索场景:典型的 RAG 增强检索高并发场景,输入少输出多,每次问题请求处理时间在 1-2s,峰值支持 50 并发(按照 5000 人的金融机构有 1% 的并发率),需要的 GPU卡的数量在 150-300 张 A100(80G),如果想要更精准的回复,可以选择 200B 或更大的模型,但 200B 大模型算力消耗会有 2.7 倍的增加。


智能外呼场景:典型的高并发低延时场景,输入多输出少,每次意图识别响应时间 200-300ms,峰值支持 1000 并发,需要的 GPU 卡的数量在 600-900 张 A100(80G)。


在正式生产业务应用时,业务是有典型的波峰波谷的,如果我们按照波峰要求建设算力池,势必会带来资源的低效使用,例如:知识库检索应用的平均资源利用率在 20%-30%;智能外呼应用的平均资源利用率在 5%-10%。如何提高算力资源利用率将是一个颇具挑战的问题?

相关文章
|
存储 数据可视化 程序员
深夜测评:讯飞星火大模型vs FuncGPT (慧函数),到底哪家强?
作为一名程序员,我们可能在多种情况下需要找出两个List中的重复元素。以下是一些常见的应用场景:
|
1月前
|
前端开发 算法 测试技术
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
本文对比测试了通义千文、文心一言、智谱和讯飞等多个国产大模型在处理基础计数问题上的表现,特别是通过链式推理(COT)提示的效果。结果显示,GPTo1-mini、文心一言3.5和讯飞4.0Ultra在首轮测试中表现优秀,而其他模型在COT提示后也能显著提升正确率,唯有讯飞4.0-Lite表现不佳。测试强调了COT在提升模型逻辑推理能力中的重要性,并指出免费版本中智谱GLM较为可靠。
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
|
20天前
|
存储 弹性计算 自然语言处理
基础大模型 vs 应用大模型
基础大模型(如GPT-3、BERT等)通过大量通用数据训练,具备强大的泛化能力。应用大模型则在此基础上进行微调,针对特定任务优化。两者均将知识编码在参数中,而非直接存储原始数据,实现“自然留存”。阿里云提供多种大模型和服务,欢迎体验。
|
4月前
|
人工智能 自然语言处理 语音技术
通用大模型VS垂直大模型
【7月更文挑战第16天】通用大模型VS垂直大模型
|
5月前
|
数据采集 运维 安全
《百炼成金-大金融模型新篇章》––08.问题6:“大模型广泛应用vs应用安全隐患”,大模型面临的安全挑战
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
|
5月前
|
人工智能 运维 搜索推荐
《百炼成金-大金融模型新篇章》––07.问题5:“杀手级通用大模型vs百花齐放专属大模型”,企业级AI应用的价值自证?
百炼必定成金,新质生产力会催生新质劳动力,谨以此文抛砖引玉,希望与业内的各位朋友一同探讨如何积极拥抱并运用大模型技术,以应对和驾驭不断变化的市场环境,实现科技金融持续稳定的提质增效和创新发展,携手开启金融大模型未来新篇章。
118 1
|
4月前
|
自然语言处理 C++
通用大模型VS垂直大模型对比
通用大模型VS垂直大模型对比
|
6月前
|
SQL 自然语言处理 算法
NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2SQL、Text2DSL]
NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2SQL、Text2DSL]
NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(Spider vs BIRD)全面对比优劣分析[Text2SQL、Text2DSL]
|
1月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
133 2
|
19天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
83 2
下一篇
无影云桌面