实时计算 Flink版产品使用问题之怎么配置savepoint

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:flinkcdc 3.0 如何配置savepoint?

flinkcdc 3.0 如何配置savepoint , 我在 3.0的文档里没看到, 现在任务失败之后,还需要手动设置 同步时间吗?



参考答案:

在flink-conf里面配置检查点路径,再重新启动。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602807



问题二:Flink CDC 里这样合理吗?

Flink CDC中,这出现这个合理吗?



参考答案:

可以写范围的,比如'5800-5804'。增量阶段只有1了;而且并行度不需要在代码写死,server-id可以写死,写最大就行了。另外server-id设置范围,但是你的并行度是1,他也只会从你的sever-id选1个。server-id范围>=并行度。然后你并行度是5,他也只会从你的范围里面选5个server-id,而不是全部用。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602803



问题三:如果我没有给FlinkCDC单独指定并行度,它的并行度是1,还是跟整个Flink任务的并行度一致?

如果我没有给FlinkCDC单独指定并行度,它的并行度是1,还是跟整个Flink任务的并行度一致?



参考答案:

和flink默认并行度一致。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602802



问题四:做flink cdc2doris的操作时,新建一个任务,设置从最早的 binlog 开始同步正常吗?

做flink cdc2doris的操作时,新建一个任务,设置从最早的 binlog 开始同步(scan.startup.mode=earliest-offset)没有问题,然后新加一张表,从savepoint启动后发现新加的表是从最新的binlog开始同步数据的。是正常现象么?



参考答案:

动态加表推荐使用默认的启动



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602801



问题五:FlinkCDC监听oracle 19C的,读取出来的Timestamp类型,增加了8小时,咋解决?

FlinkCDC监听oracle 19C的,读取出来的Timestamp类型,增加了8小时,可以设置哪个参数解决这个问题呢?



参考答案:

目前应该没有。或者这个可能需要自己转下, timestamp和date类型。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/602797

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
15天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
679 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
10天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
32 9
|
12天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
3天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
18 0
|
28天前
|
数据可视化 大数据 数据处理
评测报告:实时计算Flink版产品体验
实时计算Flink版提供了丰富的文档和产品引导,帮助初学者快速上手。其强大的实时数据处理能力和多数据源支持,满足了大部分业务需求。但在高级功能、性能优化和用户界面方面仍有改进空间。建议增加更多自定义处理函数、数据可视化工具,并优化用户界面,增强社区互动,以提升整体用户体验和竞争力。
33 2
|
SQL 存储 运维
如何降低 Flink 开发和运维成本?阿里云实时计算平台建设实践
本次分享主要介绍阿里云实时计算平台从 2.0 基于 Yarn 的架构到 3.0 云原生时代的演进,以及在 3.0 平台上一些核心功能的建设实践,如健康分,智能诊断,细粒度资源,作业探查以及企业级安全的建设等。
如何降低 Flink 开发和运维成本?阿里云实时计算平台建设实践
|
存储 SQL 分布式计算
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践
263 0
|
存储 数据挖掘 Apache
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(2)
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(2)
274 0
|
SQL 存储 人工智能
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3)
《Apache Flink 案例集(2022版)》——2.数据分析——汽车之家-Flink 的实时计算平台 3.0 建设实践(3)
261 0
|
消息中间件 存储 SQL
《Apache Flink 案例集(2022版)》——5.数字化转型——联通-联通实时计算平台演进与实践
《Apache Flink 案例集(2022版)》——5.数字化转型——联通-联通实时计算平台演进与实践
180 0

相关产品

  • 实时计算 Flink版