实时计算 Flink版产品使用问题之通过flink同步kafka数据进到doris,decimal数值类型的在kafka是正常显示数值,但是同步到doris表之后数据就变成了整数,该如何处理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink如果sink表建表字段过短,有数据不能插入,有啥策略配置能丢弃这些不合格的数据吗?

Flink如果sink表建表字段过短,有数据不能插入,有啥策略配置能丢弃这些不合格的数据吗?

configuration.set(ExecutionConfigOptions.TABLE_EXEC_SINK_TYPE_LENGTH_ENFORCER, ExecutionConfigOptions.TypeLengthEnforcer.IGNORE);

这个好像没有啥用啊,有大佬知道这个怎么解决吗?



参考答案:

Flink针对Sink表字段长度限制的问题,默认情况下确实会对超出长度的数据进行检查并抛出异常。ExecutionConfigOptions.TABLE_EXEC_SINK_TYPE_LENGTH_ENFORCER配置项在某些版本中可能并未提供忽略长度限制的功能。一种替代方案是在预处理阶段对数据进行截断或过滤,或者自定义SinkFunction来处理这种情况。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605952



问题二:我flink stream任务只有输入-》窗口算子-》输出,也没法一次性获取并输出么?

我flink stream任务只有输入-》窗口算子-》输出,窗口时间用的是processtime,窗口函数是processWindowFunction,窗口大小是30s,刚启动我看窗口算子receive的记录就已经达到源端的数据上限了,所以按道理不到30s,源端所有数据都应该进入窗口了,那么数据应该一次性从窗口算子中输出,按道理应该不到一分钟就应该跑完了,但是我看窗口算子下游还在慢慢传出数据,持续了一个多小时还没结束。这难道是窗口buffer一次接受的数据有限,所以就算所有数据在30秒内到达了inbufferPool也没法一次性获取并输出么?



参考答案:

在Flink中,ProcessTime窗口算子确实会在每个窗口时间间隔结束后触发窗口计算,但窗口数据的处理和输出并非立即一次性完成,而是受到几个因素的影响:

1. Event Time vs. Processing Time:

虽然你提到使用的是Processing Time窗口,但请注意,如果源数据事件时间戳和处理时间不一致,可能会产生意料之外的效果。确保源数据的时间戳被正确处理为Processing Time。

2. Watermark:

即使是Processing Time窗口,也需要关注水印(watermark)的概念。虽然对于Processing Time窗口,水印的影响不如Event Time窗口显著,但如果设置了水印生成策略,它可能会影响到窗口数据的处理边界。

3. 窗口缓冲区和批处理:

窗口算子并不会一次性处理所有流入的数据,而是按批次进行处理。即使所有数据在30秒内到达窗口,窗口算子在触发计算时也会按照内部的批处理逻辑分批处理数据。这有助于平滑资源使用并控制内存占用。

4. Backpressure:

当下游算子处理速度慢于上游算子时,会触发反压机制,上游算子会暂时放缓数据处理速度,这也可能导致数据处理和输出延后。

5. 算子并行度:

窗口算子的并行度也会影响数据处理速度,多个并行实例会独立处理各自窗口的数据,输出速率取决于最慢的那个实例。

6. 窗口函数复杂度:

ProcessWindowFunction 的计算复杂度也会影响处理速度,如果窗口函数内部逻辑复杂,或者涉及大量的外部系统交互,可能会显著降低处理速度。

综上所述,即使所有数据在30秒内到达窗口,窗口算子的输出也不会立即一次性完成,而是受到上述因素的影响,数据可能需要较长时间才能完全处理并输出。要解决这个问题,你可以:

调整并行度以平衡资源使用和处理速度。

检查窗口函数的实现,确保其高效且无阻塞性操作。

考虑是否有必要优化上下游算子之间的反压策略。

查看Flink UI或日志,分析作业状态,找出可能的瓶颈。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605951



问题三:pyflink,用哪个版本适合?

pyflink,用哪个版本适合?



参考答案:

对于Apache Flink的Python API(PyFlink)的选择,通常建议使用最新稳定版,因为它包含了最新的特性和性能优化,并且对Python版本的支持也会随着Flink版本的更新而更新。

一般来说,考虑到向前兼容性和技术支持,选择与你的Python环境兼容且稳定的PyFlink版本是比较明智的决策。同时,还要确保你所使用的任何依赖库以及生产环境也能够支持你选择的PyFlink版本。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605949



问题四:Flink是各自添加sink导出,还是union在一起后通过一个sink导出比较好?

Flink多个同类型的流输出的话,是各自添加sink导出,还是union在一起后通过一个sink导出比较好?有没有小伙伴试过哪个速度更快呢?



参考答案:

关于多个同类型流输出至下游存储,是否合并为一个Sink取决于业务需求以及下游存储的性能瓶颈。如果下游存储能够高效处理合并后的数据流,并且合并操作不影响业务逻辑,那么可以考虑使用Union后通过一个Sink导出。若分开处理有助于解耦或性能优化,则各自添加Sink。实际效果还需结合压测结果确定。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605948



问题五:我想请教一个问题,通过flink同步kafka数据进到doris,Flink这个该怎么处理?

我想请教一个问题,通过flink同步kafka数据进到doris,decimal数值类型的在kafka是正常显示数值,但是同步到doris表之后数据就变成了整数,Flink这个该怎么处理?



参考答案:

在Flink同步Kafka数据到Doris时,decimal类型数值丢失精度的问题,可能是因为在序列化或反序列化过程中发生了类型映射错误。建议检查Flink Kafka connector和Doris sink的相关配置,确保decimal类型的字段在传输和写入过程中保持一致。例如,在Doris sink的DDL中明确指定decimal列的精度和比例。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/605947

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
202 0
|
2月前
|
消息中间件 关系型数据库 MySQL
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
本教程展示如何使用Flink CDC YAML快速构建从MySQL到Kafka的流式数据集成作业,涵盖整库同步和表结构变更同步。无需编写Java/Scala代码或安装IDE,所有操作在Flink CDC CLI中完成。首先准备Flink Standalone集群和Docker环境(包括MySQL、Kafka和Zookeeper),然后通过配置YAML文件提交任务,实现数据同步。教程还介绍了路由变更、写入多个分区、输出格式设置及上游表名到下游Topic的映射等功能,并提供详细的命令和示例。最后,包含环境清理步骤以确保资源释放。
358 2
基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成
|
2月前
|
消息中间件 Kafka 流计算
docker环境安装kafka/Flink/clickhouse镜像
通过上述步骤和示例,您可以系统地了解如何使用Docker Compose安装和配置Kafka、Flink和ClickHouse,并进行基本的验证操作。希望这些内容对您的学习和工作有所帮助。
283 28
|
5月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
2309 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
5月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
266 56
|
3月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
297 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
4月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
5月前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
|
6月前
|
运维 搜索推荐 数据安全/隐私保护
阿里云实时计算Flink版测评报告
阿里云实时计算Flink版在用户行为分析与标签画像场景中表现出色,通过实时处理电商平台用户行为数据,生成用户兴趣偏好和标签,提升推荐系统效率。该服务具备高稳定性、低延迟、高吞吐量,支持按需计费,显著降低运维成本,提高开发效率。
152 1
|
Java 中间件 流计算
Flink 如何分流数据
Flink 如何分流数据,3种分流方式
4179 0

相关产品

  • 实时计算 Flink版