实时计算 Flink版产品使用问题之如何实现OSS数据到Kafka的实时同步

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flinkcdc支持从Oracle备库抽取数据么?

Flinkcdc支持从Oracle备库抽取数据么?



参考答案:

支持



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607306



问题二:flink cdc 读取多个表,,打到ods层。后续需要单独重跑一张表,有办法吗?

flink cdc 读取多个表,,打到ods层。后续需要单独重跑一张表,有办法吗?就是原本用一个flink cdc任务 监听数据库多个表到kafka。现在下游某张表需要重新跑一下。



参考答案:

移除出来,用spark拉,再加进去启动。对于这种涉及多表的,我的实践经验都是自己手搓sink。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607303



问题三:Flink CDC里有没有什么方法 oss 实时同步数据到kafka?

Flink CDC里有没有什么方法 oss 实时同步数据到kafka?



参考答案:

Apache Flink CDC 目前主要专注于数据库变更数据捕获(Change Data Capture),并不直接支持从对象存储服务(如阿里云OSS)实时同步数据到Kafka。然而,您可以通过以下方式间接实现OSS数据到Kafka的实时同步:

  1. 使用阿里云DataHub服务:
    阿里云提供了DataHub服务,它可以实时读取OSS文件事件,然后将这些事件作为流数据发送出去。您可以配置DataHub订阅OSS bucket的文件上传、删除等事件,然后将这些事件流转发到Kafka主题上。
  2. 自定义Flink Source Connector:
    虽然Flink CDC没有直接的OSS Source,但您可以开发一个自定义的Flink Source Connector,该Connector可以监听OSS Bucket的事件通知服务(如OSS的事件通知功能),将OSS文件的新增或修改事件转换成Flink DataStream,然后通过Flink的Sink Connector将数据写入到Kafka。
  3. 定时任务 + Flink Batch/Stream Processing:
    可以通过定时任务(如阿里云的MaxCompute或自定义脚本)定期检查OSS桶中新增或更新的文件,然后使用Flink Batch或DataStream API读取这些文件数据并实时写入到Kafka。

虽然以上方案不是直接的Flink CDC功能,但它们可以配合使用来实现OSS数据到Kafka的实时同步。如果您的需求是持续不断的将OSS文件内容变为实时流数据,建议考虑使用阿里云提供的事件驱动服务,结合Flink或其他流处理框架进行数据传输。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607301



问题四:Flink CDC里为啥我学习demo,连不上binlog?

Flink CDC为啥我学习demo,连不上binlog?cdc可以读取全量数据,但是读不到binlog新增的数据,用的root,应该有mysql所有权限。 这个是代码。



参考答案:

是wsl环境问题导致的,localhost连接会报错,改成局域网ip的话,binlog读取正常了。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607300



问题五:Flink CDC里多表合成单表有大佬有什么好的处理方案吗?

Flink CDC里多表合成单表有大佬有什么好的处理方案吗?



参考答案:

在 Apache Flink CDC 中,如果你想将多个数据库表的数据合并到一个宽表(单一视图)中,可以采用以下处理方案:

  1. 定义联合源(Union Sources):
    如果你想将多个表的数据作为一个整体处理,但每个表的结构相似,可以创建多个Flink CDC连接器分别从不同表中抽取变更数据,然后将这些流通过union()操作合并为一个流。但这不适用于构建宽表的情况,因为它不支持字段级别的合并。
  2. 使用SQL DDL定义宽表:
    在Flink SQL中,可以通过JOIN操作将多个表的数据拼接到一起,构建一个宽表。例如,如果你知道每个表之间有一定的关联关系(如通过主键或外键),可以创建一个虚拟视图或物化视图来实现。
CREATE VIEW wide_table AS
SELECT t1.*, t2.field1, t2.field2
FROM source_table1 t1
JOIN source_table2 t2 ON t1.id = t2.foreign_key;
  1. 在Flink CDC作业中,先为每个表创建CDC Source,然后通过SQL查询将多个Source的数据JOIN在一起,最后将结果写入到目标存储。
  2. 外部数据整合工具或ETL流程:
    如果在Flink内部不方便实现复杂的宽表构建逻辑,可以先将CDC数据输出到一个临时存储(如Kafka或HDFS),然后使用专门的数据整合工具(如Apache Nifi、Airflow等)或自定义的ETL流程来处理这些数据,生成宽表后再流入下游系统。
  3. 实时数据仓库层:
    在某些场景下,可以将Flink CDC捕获的数据先写入到一个实时数据仓库(如Hudi、Iceberg或Delta Lake),这些数据湖技术通常支持ACID事务和Upsert操作,方便在数据仓库层实现宽表的构建和维护。
  4. Flink SQL CDC作业的多流JOIN:
    如果Flink CDC支持多流JOIN(不同表的变更事件流),那么可以通过JOIN操作将多个变更事件流合并成宽表流,然后将结果写入到目标存储。但请注意,这通常需要复杂的事件时间窗口管理和事件排序处理,以确保JOIN的正确性。

在实际操作时,应结合具体业务场景和数据模型,选择合适的解决方案,并注意处理数据流的并发性、延迟和一致性问题。同时,考虑到Flink CDC的特性,确保在处理变更事件时能够正确处理插入、更新和删除事件。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/607296

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
25天前
|
消息中间件 Java 关系型数据库
实时计算 Flink版操作报错合集之从 PostgreSQL 读取数据并写入 Kafka 时,遇到 "initial slot snapshot too large" 的错误,该怎么办
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
923 0
|
18天前
|
SQL 存储 NoSQL
贝壳找房基于Flink+Paimon进行全量数据实时分组排序的实践
本文投稿自贝壳家装数仓团队,在结合家装业务场景下所探索出的一种基于 Flink+Paimon 的排序方案。这种方案可以在实时环境对全量数据进行准确的分组排序,同时减少对内存资源的消耗。在这一方案中,引入了“事件时间分段”的概念,以避免 Flink State 中冗余数据对排序结果的干扰,在保证排序结果准确性的同时,减少了对内存的消耗。并且基于数据湖组件 Paimon 的聚合模型和 Audit Log 数据在数据湖内构建了拉链表,为排序结果提供了灵活的历史数据基础。
28621 0
贝壳找房基于Flink+Paimon进行全量数据实时分组排序的实践
|
25天前
|
消息中间件 关系型数据库 MySQL
实时计算 Flink版操作报错合集之同步MySQL数据并EP(复杂事件处理)时,编译报错,如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
11天前
|
消息中间件 Java Kafka
Java中的流处理框架:Kafka Streams与Flink
Java中的流处理框架:Kafka Streams与Flink
|
26天前
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用问题之通过flink同步kafka数据进到doris,decimal数值类型的在kafka是正常显示数值,但是同步到doris表之后数据就变成了整数,该如何处理
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
26天前
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用问题之 从Kafka读取数据,并与两个仅在任务启动时读取一次的维度表进行内连接(inner join)时,如果没有匹配到的数据会被直接丢弃还是会被存储在内存中
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
16天前
|
Java
使用kafka-clients操作数据(java)
使用kafka-clients操作数据(java)
18 6
|
12天前
|
消息中间件 Java Kafka
kafka 磁盘扩容与数据均衡操作代码
Kafka 的磁盘扩容和数据均衡是与保证Kafka集群可用性和性能相关的两个重要方面。在 Kafka 中,分区数据的存储和平衡对集群的运行至关重要。以下是有关Kafka磁盘扩容和数据均衡的一些建议
16 1
|
8天前
|
存储 消息中间件 数据挖掘
Python实时数据分析:利用丰富的库(如Pandas, PySpark, Kafka)进行流处理,涵盖数据获取、预处理、处理、存储及展示。
【7月更文挑战第5天】Python实时数据分析:利用丰富的库(如Pandas, PySpark, Kafka)进行流处理,涵盖数据获取、预处理、处理、存储及展示。示例代码展示了从Kafka消费数据,计算社交媒体活跃度和物联网设备状态,并可视化结果。适用于监控、故障检测等场景。通过学习和实践,提升实时数据分析能力。
18 0
|
2月前
|
消息中间件 数据采集 分布式计算
【数据采集与预处理】数据接入工具Kafka
【数据采集与预处理】数据接入工具Kafka
47 1
【数据采集与预处理】数据接入工具Kafka

热门文章

最新文章

相关产品

  • 实时计算 Flink版