Python 的 requests 库是一个强大的 HTTP 客户端库,用于发送各种类型的 HTTP 请求

简介: 【6月更文挑战第15天】Python的requests库简化了HTTP请求。安装后,使用`requests.get()`发送GET请求,检查`status_code`为200表示成功。类似地,`requests.post()`用于POST请求,需提供JSON数据和`Content-Type`头。

Python 的 requests 库是一个强大的 HTTP 客户端库,用于发送各种类型的 HTTP 请求。以下是使用 requests 库发送 HTTP 请求的基本步骤:

首先,你需要安装 requests 库。如果你还没有安装,可以使用 pip 来安装:

bash
pip install requests
安装完成后,你可以使用以下代码来发送 HTTP 请求:

发送 GET 请求:

python
import requests

url = 'https: //api.example.com/data'
response = requests.get(url)

检查请求是否成功

if response.status_code == 200:

# 如果成功,打印返回的内容  
print(response.text)  

else:

# 如果失败,打印错误信息  
print('Failed to retrieve data')

发送 POST 请求:

python
import requests
import json

url = 'https: //api.example.com/data'
data = {'key1': 'value1', 'key2': 'value2'}
headers = {'Content-Type': 'application/json'}

response = requests.post(url, data=json.dumps(data), headers=headers)

检查请求是否成功

if response.status_code == 200:

# 如果成功,打印返回的内容  
print(response.text)  

else:

# 如果失败,打印错误信息  
print('Failed to post data')

在上面的 POST 请求示例中,我们发送了一个 JSON 格式的数据。json.dumps(data) 将 Python 字典转换为 JSON 格式的字符串。

发送 PUT 和 DELETE 请求:

PUT 和 DELETE 请求的发送方式与 GET 和 POST 非常相似,只是需要调用不同的方法:

python

发送 PUT 请求

response = requests.put(url, data=json.dumps(data), headers=headers)

发送 DELETE 请求

response = requests.delete(url)
处理响应:

response 对象包含了很多有用的信息,如状态码、响应头、响应内容等。你可以通过 response.status_code 获取状态码,通过 response.headers 获取响应头,通过 response.text 或 response.json() 获取响应内容(如果内容是 JSON 格式的话)。

注意:对于非 200 的状态码,你可能需要处理错误或异常。虽然 requests 不会因非 200 的状态码而抛出异常,但最好还是检查状态码并根据需要处理错误。

相关文章
|
2月前
|
JSON 监控 API
掌握使用 requests 库发送各种 HTTP 请求和处理 API 响应
本课程全面讲解了使用 Python 的 requests 库进行 API 请求与响应处理,内容涵盖环境搭建、GET 与 POST 请求、参数传递、错误处理、请求头设置及实战项目开发。通过实例教学,学员可掌握基础到高级技巧,并完成天气查询应用等实际项目,适合初学者快速上手网络编程与 API 调用。
463 130
|
1月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
167 1
|
2月前
|
IDE 开发工具 开发者
Python类型注解:提升代码可读性与健壮性
Python类型注解:提升代码可读性与健壮性
264 102
|
4月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
3月前
HTTP协议中请求方式GET 与 POST 什么区别 ?
GET和POST的主要区别在于参数传递方式、安全性和应用场景。GET通过URL传递参数,长度受限且安全性较低,适合获取数据;而POST通过请求体传递参数,安全性更高,适合提交数据。
513 2
|
3月前
|
安全 JavaScript Java
Python中None与NoneType的真相:从单例对象到类型系统的深度解析
本文通过10个真实场景,深入解析Python中表示“空值”的None与NoneType。从单例模式、函数返回值,到类型注解、性能优化,全面揭示None在语言设计与实际编程中的核心作用,帮助开发者正确高效地处理“无值”状态,写出更健壮、清晰的Python代码。
387 3
|
4月前
|
Go 定位技术
Golang中设置HTTP请求代理的策略
在实际应用中,可能还需要处理代理服务器的连接稳定性、响应时间、以及错误处理等。因此,建议在使用代理时增加适当的错误重试机制,以确保网络请求的健壮性。此外,由于网络编程涉及的细节较多,彻底测试以确认代理配置符合预期的行为也是十分重要的。
242 8
|
3月前
|
缓存 数据可视化 Linux
Python文件/目录比较实战:排除特定类型的实用技巧
本文通过四个实战案例,详解如何使用Python比较目录差异并灵活排除特定文件,涵盖基础比较、大文件处理、跨平台适配与可视化报告生成,助力开发者高效完成目录同步与数据校验任务。
155 0
|
3月前
|
IDE API 开发工具
Python类型注解:让代码“开口说话”的隐形助手
Python类型注解为动态语言增添类型信息,提升代码可读性与健壮性。通过变量、函数参数及返回值的类型标注,配合工具如mypy、IDE智能提示,可提前发现类型错误,降低调试与协作成本。本文详解类型注解的实战技巧、生态支持及最佳实践,助你写出更高质量的Python代码。
198 0
|
4月前
|
缓存

推荐镜像

更多