python WAV音频文件处理—— (2)处理PCM音频-- waveio包

简介: python WAV音频文件处理—— (2)处理PCM音频-- waveio包

破译 PCM-Encoded 的音频样本

这部分将变得稍微高级一些,但从长远来看,它将使在 Python 中处理 WAV 文件变得更加容易。

在本教程结束时,我们将构建出 waveio 包:

waveio/
├── __init__.py
├── encoding.py
├── metadata.py
├── reader.py
└── writer.py

  • encoding 模块将负责归一化幅度值和 PCM 编码样本之间的双向转换
  • metadata 模块将表示 WAV 文件头
  • reader 读取和解释音频帧
  • writer 写入 WAV 文件

枚举编码格式

waveio/encoding.py

创建PCMEncoding类继承枚举类IntEnum,并实现max, min, num_bits方法。

from enum import IntEnum

class PCMEncoding(IntEnum):
    UNSIGNED_8 = 1
    SIGNED_16 = 2
    SIGNED_24 = 3
    SIGNED_32 = 4

    @property
    def max(self):
        return 255 if self == 1 else -self.min -1
    
    @property
    def min(self):
        return 0 if self == 1 else -(2** (self.num_bits-1))
    
    @property
    def num_bits(self):
        return self * 8

Docode 将音频帧转换为振幅

继续向 PCMEncoding 类添加一个新方法decode,该方法将处理四种编码格式,将帧转换成(归一化的)振幅。

from enum import IntEnum
import numpy as np

class PCMEncoding(IntEnum):
    # ...

    def decode(self, frames):
        match self:
            case PCMEncoding.UNSIGNED_8:
                return np.frombuffer(frames, "u1") / self.max * 2 - 1
            case PCMEncoding.SIGNED_16:
              # little-endin 2-byte signed integer 
                return np.frombuffer(frames, "<i2") / -self.min
            case PCMEncoding.SIGNED_24:
                triplets = np.frombuffer(frames, "u1").reshape(-1, 3)
                padded = np.pad(triplets, ((0, 0), (0, 1)), mode="constant")
                samples = padded.flatten().view("<i4")
                samples[samples > self.max] += 2 * self.min
                return samples / -self.min
            case PCMEncoding.SIGNED_32:
                return np.frombuffer(frames, "<i4") / -self.min
            case _:
                raise TypeError("unsupported encoding")


Encode 将振幅编码为音频帧

添加.encoder()方法,将振幅转换成帧。

from enum import IntEnum

import numpy as np

class PCMEncoding(IntEnum):
    # ...
  def _clamp(self, samples):
        return np.clip(samples, self.min, self.max)
        
    def encode(self, amplitudes):
        match self:
            case PCMEncoding.UNSIGNED_8:
                samples = np.round((amplitudes + 1) / 2 * self.max)
                return self._clamp(samples).astype("u1").tobytes()
            case PCMEncoding.SIGNED_16:
                samples = np.round(-self.min * amplitudes)
                return self._clamp(samples).astype("<i2").tobytes()
            case PCMEncoding.SIGNED_24:
                samples = np.round(-self.min * amplitudes)
                return (
                    self._clamp(samples)
                    .astype("<i4")
                    .view("u1")
                    .reshape(-1, 4)[:, :3]
                    .flatten()
                    .tobytes()
                )
            case PCMEncoding.SIGNED_32:
                samples = np.round(-self.min * amplitudes)
                return self._clamp(samples).astype("<i4").tobytes()
            case _:
                raise TypeError("unsupported encoding")

封装 WAV 文件的元数据

管理WAV文件的多个元数据可能很麻烦,因此我们自定义一个数据类,将它们分组在一个命名空间下。

waveio/metadata.py

from dataclasses import dataclass

from waveio.encoding import PCMEncoding

@dataclass(frozen=True)
class WAVMetadata:
    encoding: PCMEncoding
    frames_per_second: float
    num_channels: int
    num_frames: int | None = None


考虑到人类认喜欢用秒表示声音持续时间,我们添加一个属性num_seconds进行帧–>秒的转换:

@dataclass(frozen=True)
class WAVMetadata:
    ...

    @property
    def num_seconds(self):
        if self.num_frames is None:
            raise ValueError("indeterminate stream of audio frames")
        return self.num_frames / self.frames_per_second


加载所有音频帧

使用原始的wave读取wav文件需要手动处理二进制数据,我们将创建reader 避免这一麻烦。

waveio/reader.py

import wave

from waveio.encoding import PCMEncoding
from waveio.metadata import WAVMetadata

class WAVReader:
    def __init__(self, path):
        self._wav_file = wave.open(str(path))
        self.metadata = WAVMetadata(
            PCMEncoding(self._wav_file.getsampwidth()),
            self._wav_file.getframerate(),
            self._wav_file.getnchannels(),
            self._wav_file.getnframes(),
        )

    def __enter__(self):
        return self

    def __exit__(self, *args, **kwargs):
        self._wav_file.close()

对于较小的文件,可以直接加载到内存:

class WAVReader:
    # ...

    def _read(self, max_frames=None):
        self._wav_file.rewind()
        frames = self._wav_file.readframes(max_frames)
        return self.metadata.encoding.decode(frames)

readframes()会向前移动文件指针,rewind()会将指针重置在开头,确保每次读取都是从头开始读取。


但是,在处理音频信号时,通常需要将数据视为帧/通道序列,而不是单个幅度样本。幸运的是,根据您的需要,您可以快速将一维 NumPy 数组重塑为合适的二维帧或通道矩阵。我们将通过reshape装饰器实现这一功能。

import wave
from functools import cached_property

from waveio.encoding import PCMEncoding
from waveio.metadata import WAVMetadata

class WAVReader:
    # ...

    @cached_property
    @reshape("rows")
    def frames(self):
        return self._read(self.metadata.num_frames)

    @cached_property
    @reshape("columns")
    def channels(self):
        return self.frames


reshape装饰器的实现如下:

import wave
from functools import cached_property, wraps

from waveio.encoding import PCMEncoding
from waveio.metadata import WAVMetadata

def reshape(shape):
    if shape not in ("rows", "columns"):
        raise ValueError("shape must be either 'rows' or 'columns'")

    def decorator(method):
        @wraps(method)
        def wrapper(self, *args, **kwargs):
            values = method(self, *args, **kwargs)
            reshaped = values.reshape(-1, self.metadata.num_channels)
            return reshaped if shape == "rows" else reshaped.T
        return wrapper

    return decorator

# ...

为了让WAVReader在外部可用,我们在waveio.__init__.py中暴漏WAVReader类:

from waveio.reader import WAVReader

__all__ = ["WAVReader"]


使用 Matplotlib 绘制静态波形

我们已经可以进行wav文件的读取了,一个很直接的应用是使用matplotlib绘制声音的波形。

plot_waveform.py

from argparse import ArgumentParser
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import FuncFormatter
from waveio import WAVReader

def main():
    args = parse_args()
    with WAVReader(args.path) as wav:
        plot(args.path.name, wav.metadata, wav.channels)

def parse_args():
    parser = ArgumentParser(description="Plot the waveform of a WAV file")
    parser.add_argument("path", type=Path, help="path to the WAV file")
    return parser.parse_args()

def plot(filename, metadata, channels):
    fig, ax = plt.subplots(
        nrows=metadata.num_channels,
        ncols=1,
        figsize=(16, 9),
        sharex=True, # 共享x轴
    )

    if isinstance(ax, plt.Axes):
        ax = [ax]

    time_formatter = FuncFormatter(format_time)
    timeline = np.linspace(
        start=0,
        stop=metadata.num_seconds,
        num=metadata.num_frames
    )

    for i, channel in enumerate(channels):
        ax[i].set_title(f"Channel #{i + 1}")
        ax[i].set_yticks([-1, -0.5, 0, 0.5, 1])
        ax[i].xaxis.set_major_formatter(time_formatter)
        ax[i].plot(timeline, channel)

    fig.canvas.manager.set_window_title(filename)
    plt.tight_layout()
    plt.show()

def format_time(instant, _):
    if instant < 60:
        return f"{instant:g}s"
    minutes, seconds = divmod(instant, 60)
    return f"{minutes:g}m {seconds:02g}s"

if __name__ == "__main__":
    main()


执行

python .\plot_waveform.py .\sounds\Bicycle-bell.wav

可以看到上面的波形图。

读取音频帧的切片

如果您有一个特别长的音频文件,则可以通过缩小感兴趣的音频帧的范围来减少加载和解码基础数据所需的时间。

我们将通过切片功能实现读取一个范围的音频

首先在脚本参数中添加起始点(start)和结束点(end)这两个参数。

# ...

def parse_args():
    parser = ArgumentParser(description="Plot the waveform of a WAV file")
    parser.add_argument("path", type=Path, help="path to the WAV file")
    parser.add_argument(
        "-s",
        "--start",
        type=float,
        default=0.0,
        help="start time in seconds (default: 0.0)",
    )
    parser.add_argument(
        "-e",
        "--end",
        type=float,
        default=None,
        help="end time in seconds (default: end of file)",
    )
    return parser.parse_args()
    
def main():
    args = parse_args()
    with WAVReader(args.path) as wav:
        plot(
            args.path.name,
            wav.metadata,
            wav.channels_sliced(args.start, args.end)
        )

# ...

plot中,时间轴不再从0开始,需要和切片时间匹配:

# ...

def plot(filename, metadata, channels):
    # ...

    time_formatter = FuncFormatter(format_time)
    timeline = np.linspace(
        channels.frames_range.start / metadata.frames_per_second,
        channels.frames_range.stop / metadata.frames_per_second,
        len(channels.frames_range)
    )

然后我们需要更新reader.py文件,读取音频的任意切片

# ...

class WAVReader:
    # ...

    @cached_property
    @reshape("rows")
    def frames(self):
        return self._read(self.metadata.num_frames, start_frame=0)

    # ...

    def _read(self, max_frames=None, start_frame=None):
        if start_frame is not None:
            self._wav_file.setpos(start_frame) # 设置起始位置
        frames = self._wav_file.readframes(max_frames)
        return self.metadata.encoding.decode(frames)


    @reshape("columns")
    def channels_sliced(self, start_seconds=0.0, end_seconds=None):
        if end_seconds is None:
            end_seconds = self.metadata.num_seconds
        frames_slice = slice(
            round(self.metadata.frames_per_second * start_seconds),
            round(self.metadata.frames_per_second * end_seconds)
        )
        frames_range = range(*frames_slice.indices(self.metadata.num_frames))
        values = self._read(len(frames_range), frames_range.start)
        return ArraySlice(values, frames_range)

我们借助了ArraySlice包装切片,包装了numpy array并且公开了便于绘制时间线的.frames_rage属性。

reader.py中添加ArraySlice的定义:

# ...

class ArraySlice:
    def __init__(self, values, frames_range):
        self.values = values
        self.frames_range = frames_range

    def __iter__(self):
        return iter(self.values)

    def __getattr__(self, name):
        return getattr(self.values, name)

    def reshape(self, *args, **kwargs):
        reshaped = self.values.reshape(*args, **kwargs)
        return ArraySlice(reshaped, self.frames_range)

    @property
    def T(self):
        return ArraySlice(self.values.T, self.frames_range)

# ...
python plot_waveform.py Bongo_sound.wav --start 3.5 --end 3.65
相关文章
|
1月前
|
自然语言处理 数据处理 Python
python操作和解析ppt文件 | python小知识
本文将带你从零开始,了解PPT解析的工具、工作原理以及常用的基本操作,并提供具体的代码示例和必要的说明【10月更文挑战第4天】
305 60
|
29天前
|
安全 Linux 数据安全/隐私保护
python知识点100篇系列(15)-加密python源代码为pyd文件
【10月更文挑战第5天】为了保护Python源码不被查看,可将其编译成二进制文件(Windows下为.pyd,Linux下为.so)。以Python3.8为例,通过Cython工具,先写好Python代码并加入`# cython: language_level=3`指令,安装easycython库后,使用`easycython *.py`命令编译源文件,最终生成.pyd文件供直接导入使用。
python知识点100篇系列(15)-加密python源代码为pyd文件
|
12天前
|
开发者 Python
Python中__init__.py文件的作用
`__init__.py`文件在Python包管理中扮演着重要角色,通过标识目录为包、初始化包、控制导入行为、支持递归包结构以及定义包的命名空间,`__init__.py`文件为组织和管理Python代码提供了强大支持。理解并正确使用 `__init__.py`文件,可以帮助开发者更好地组织代码,提高代码的可维护性和可读性。
15 2
|
1月前
|
Linux 区块链 Python
Python实用记录(十三):python脚本打包exe文件并运行
这篇文章介绍了如何使用PyInstaller将Python脚本打包成可执行文件(exe),并提供了详细的步骤和注意事项。
51 1
Python实用记录(十三):python脚本打包exe文件并运行
|
28天前
|
Java Python
> python知识点100篇系列(19)-使用python下载文件的几种方式
【10月更文挑战第7天】本文介绍了使用Python下载文件的五种方法,包括使用requests、wget、线程池、urllib3和asyncio模块。每种方法适用于不同的场景,如单文件下载、多文件并发下载等,提供了丰富的选择。
|
28天前
|
数据安全/隐私保护 流计算 开发者
python知识点100篇系列(18)-解析m3u8文件的下载视频
【10月更文挑战第6天】m3u8是苹果公司推出的一种视频播放标准,采用UTF-8编码,主要用于记录视频的网络地址。HLS(Http Live Streaming)是苹果公司提出的一种基于HTTP的流媒体传输协议,通过m3u8索引文件按序访问ts文件,实现音视频播放。本文介绍了如何通过浏览器找到m3u8文件,解析m3u8文件获取ts文件地址,下载ts文件并解密(如有必要),最后使用ffmpeg合并ts文件为mp4文件。
|
1月前
|
JSON 数据格式 Python
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
这篇文章介绍了一个Python脚本,用于统计TXT或JSON文件中特定单词的出现次数。它包含两个函数,分别处理文本和JSON文件,并通过命令行参数接收文件路径、目标单词和文件格式。文章还提供了代码逻辑的解释和示例用法。
41 0
Python实用记录(十四):python统计某个单词在TXT/JSON文件中出现的次数
|
1月前
|
Python
Python对PDF文件页面的旋转和切割
Python对PDF文件页面的旋转和切割
|
1月前
|
数据处理 Python
Python在音频传输中的应用实例解析
Python在音频传输中的应用实例解析
|
1月前
|
计算机视觉 Python
Python操作PDF文件
Python操作PDF文件