black--一键格式化Python代码

简介: black--一键格式化Python代码

black

black是一个Python代码格式化程序,使用它可以免于在调整代码格式上花费时间。black被许多大大小小的项目成功使用,包括pytest, tox, Pyramid, Django等。

格式化效果:


可以在线查看格式化效果:https://black.vercel.app/

安装:

pip install black

black的运行需要Python3.8+。

使用

black支持命令行、多种编辑器及IDE,包括vim, vscode, PyCharm等。下面是我最常用的两种。

命令行

可以直接在命令行中对python文件或目录使用:

black {source_file_or_directory}

PyCharm内置

如果你使用PyCharm 2023.2 及更高版本,可以使用内置的Black。

只需要在PyCharm中设置Black:文件–>设置–>工具–>Black

随后就可以用Ctrl+Alt+Enter进行格式化。也可以对文件夹右键,选择重新格式化代码,对文件夹中的py文件都进行格式化。

相关文章
|
22天前
|
Python
Python f-strings:让字符串格式化更简洁高效!
Python f-strings:让字符串格式化更简洁高效!
154 81
|
22天前
|
Python
Python字符串格式化利器:f-strings入门指南
Python字符串格式化利器:f-strings入门指南
132 80
|
22天前
|
Python
Python高效字符串格式化:f-strings的魅力
Python高效字符串格式化:f-strings的魅力
119 80
|
26天前
|
数据采集 机器学习/深度学习 编解码
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
本文详细介绍了一个简化版 Veo 3 文本到视频生成模型的构建过程。首先进行了数据预处理,涵盖了去重、不安全内容过滤、质量合规性检查以及数据标注等环节。
116 5
从零复现Google Veo 3:从数据预处理到视频生成的完整Python代码实现指南
|
1月前
|
机器学习/深度学习 算法 PyTorch
从零开始200行python代码实现LLM
本文从零开始用Python实现了一个极简但完整的大语言模型,帮助读者理解LLM的工作原理。首先通过传统方法构建了一个诗词生成器,利用字符间的概率关系递归生成文本。接着引入PyTorch框架,逐步重构代码,实现了一个真正的Bigram模型。文中详细解释了词汇表(tokenizer)、张量(Tensor)、反向传播、梯度下降等关键概念,并展示了如何用Embedding层和线性层搭建模型。最终实现了babyGPT_v1.py,一个能生成类似诗词的简单语言模型。下一篇文章将在此基础上实现自注意力机制和完整的GPT模型。
144 14
从零开始200行python代码实现LLM
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
200行python代码实现从Bigram模型到LLM
本文从零基础出发,逐步实现了一个类似GPT的Transformer模型。首先通过Bigram模型生成诗词,接着加入Positional Encoding实现位置信息编码,再引入Single Head Self-Attention机制计算token间的关系,并扩展到Multi-Head Self-Attention以增强表现力。随后添加FeedForward、Block结构、残差连接(Residual Connection)、投影(Projection)、层归一化(Layer Normalization)及Dropout等组件,最终调整超参数完成一个6层、6头、384维度的“0.0155B”模型
127 11
200行python代码实现从Bigram模型到LLM
|
2月前
|
数据采集 运维 API
把Postman调试脚本秒变Python采集代码的三大技巧
本文介绍了如何借助 Postman 调试工具快速生成 Python 爬虫代码,并结合爬虫代理实现高效数据采集。文章通过“跨界混搭”结构,先讲解 Postman 的 API 调试功能,再映射到 Python 爬虫技术,重点分享三大技巧:利用 Postman 生成请求骨架、通过 Session 管理 Cookie 和 User-Agent,以及集成代理 IP 提升稳定性。以票务信息采集为例,展示完整实现流程,探讨其在抗封锁、团队协作等方面的价值,帮助开发者快速构建生产级爬虫代码。
107 1
把Postman调试脚本秒变Python采集代码的三大技巧
|
2月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
89 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
2月前
|
存储 机器学习/深度学习 人工智能
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
477 0
多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
|
1月前
|
NoSQL MongoDB 开发者
Python与MongoDB的亲密接触:从入门到实战的代码指南
本文详细介绍了Python与MongoDB结合使用的实战技巧,涵盖环境搭建、连接管理、CRUD操作、高级查询、索引优化、事务处理及性能调优等内容。通过15个代码片段,从基础到进阶逐步解析,帮助开发者掌握这对黄金组合的核心技能。内容包括文档结构设计、批量操作优化、聚合管道应用等实用场景,适合希望高效处理非结构化数据的开发者学习参考。
68 0

推荐镜像

更多