深入解析Java HashMap的高性能扩容机制与树化优化

简介: 深入解析Java HashMap的高性能扩容机制与树化优化

深入解析Java HashMap的高性能扩容机制与树化优化

Java中的HashMap是一个基于哈希表实现的键值对(key-value)存储数据结构。它属于Java Collections

Framework的一部分,用于高效地存储和检索数据。以下是对Java HashMap的一些详细探讨:

基本特性

  • 键值对存储:HashMap存储键值对,每个键对应一个值。键和值都可以是任意类型的对象。
  • 键的唯一性:HashMap中的键是唯一的,即不允许有重复的键。若尝试存储一个已经存在的键,其对应的值将被新的值替换。
  • 无序存储:HashMap不保证键值对的顺序,这意味着存储的顺序与遍历的顺序可能不同。

主要操作

  • put(K key, V value):将指定的键值对插入到HashMap中。如果键已经存在,则更新对应的值。
  • get(Object key):根据键获取对应的值,如果键不存在,则返回null。
  • remove(Object key):移除指定键的键值对。
  • containsKey(Object key):判断HashMap中是否包含指定的键。
  • containsValue(Object value):判断HashMap中是否包含指定的值。
  • size():返回HashMap中键值对的数量。
  • isEmpty():判断HashMap是否为空。

内部工作原理

HashMap的核心在于哈希表(hash table)实现。以下是其基本工作流程:

  • 哈希函数:通过键的hashCode()方法计算哈希值,然后用哈希值对数组长度取模,确定键值对在哈希表中的位置。
  • 冲突处理:当不同的键计算得到的哈希值相同时,会发生哈希冲突。Java使用链表法(即链地址法)来处理冲突:在哈希表的每个位置上,实际存储的是一个链表,所有哈希值相同的键值对都存储在该链表中。
  • 扩容机制(最后部分重点解释):HashMap有一个负载因子(默认0.75),当实际存储的键值对数量超过capacity * loadFactor时,HashMap会进行扩容(通常是原来容量的两倍),并重新散列所有的键值对到新的哈希表中。

优缺点

优点

  • 快速存取:在理想情况下,HashMap的插入、删除和查找操作的时间复杂度为O(1)。
  • 灵活性:HashMap允许使用null值和null键,这在某些应用场景下非常灵活。

缺点

  • 非线程安全:HashMap不是线程安全的。如果多个线程同时操作同一个HashMap实例而没有适当的同步措施,会导致数据不一致。线程安全请参考全面解读CourrentHashMap
  • 性能退化:在极端情况下(如所有键的哈希值都相同),HashMap的性能会退化为O(n)。

扩容机制(结合treeifyBin方法)

在Java 8中,HashMap在处理哈希冲突时引入了树化机制。当某个桶中的链表长度超过一定阈值时(默认是8),链表会被转换成红黑树,以提高查询效率。这一过程被称为树化(treeify),而具体的树化操作则是在treeifyBin方法中进行的。下面我们结合treeifyBin方法和扩容过程来详细讲解。


treeifyBin 方法

首先,让我们看一下treeifyBin方法的实现:

final void treeifyBin(Node<K,V>[] tab, int hash) {
    int n, index; Node<K,V> e;
    if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
        resize();
    else if ((e = tab[index = (n - 1) & hash]) != null) {
        TreeNode<K,V> hd = null, tl = null;
        do {
            TreeNode<K,V> p = replacementTreeNode(e, null);
            if (tl == null)
                hd = p;
            else {
                p.prev = tl;
                tl.next = p;
            }
            tl = p;
        } while ((e = e.next) != null);
        if ((tab[index] = hd) != null)
            hd.treeify(tab);
    }
}

关键点分析
  • 树化的触发条件
    当某个桶中的链表长度超过阈值(默认8)时,会触发树化。但是,在进行树化之前,会检查哈希表的容量。如果当前哈希表的容量小于最小树化容量(默认64),则会进行扩容而不是树化:
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
    resize();

MIN_TREEIFY_CAPACITY的默认值是64。这意味着,如果当前哈希表的容量小于64,即使链表长度超过阈值,也不会进行树化,而是优先扩容。这是为了避免在容量较小的哈希表中引入树结构,进而影响性能。

  • 链表转换为红黑树

如果哈希表的容量大于或等于最小树化容量,会将链表节点转换为红黑树节点:

else if ((e = tab[index = (n - 1) & hash]) != null) {
    TreeNode<K,V> hd = null, tl = null;
    do {
        TreeNode<K,V> p = replacementTreeNode(e, null);
        if (tl == null)
            hd = p;
        else {
            p.prev = tl;
            tl.next = p;
        }
        tl = p;
    } while ((e = e.next) != null);
    if ((tab[index] = hd) != null)
        hd.treeify(tab);
}

这里,首先遍历链表,将每个普通节点(Node)转换为红黑树节点(TreeNode)。然后,将转换后的树节点构建成一个双向链表,最后调用红黑树节点的treeify方法将链表转换为红黑树。

  • replacementTreeNode 方法
  • 该方法用于将普通节点转换为红黑树节点:
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
    return new TreeNode<>(p.hash, p.key, p.value, next, null);
}
  • treeify方法
    红黑树节点的treeify方法将链表转换为红黑树:
final void treeify(Node<K,V>[] tab) {
    // Implementation details...
}


扩容与树化的关系

在HashMap中,扩容与树化是两种不同的性能优化手段。当哈希表的容量不足时,扩容是首选的优化手段,而当哈希表容量足够大且某个桶中的链表过长时,才会进行树化操作。扩容的主要目的是减少哈希冲突,从而降低链表长度,而树化则是通过将链表转换为红黑树来提高查找效率。


扩容过程中处理树节点

  • 在扩容过程中,如果旧哈希表中某个桶已经是红黑树结构,那么在将这些节点重新哈希到新哈希表时,需要保持红黑树结构。这一点在扩容的resize方法中有体现:
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1;
    }
    else if (oldThr > 0) // 初始阈值
        newCap = oldThr;
    else {               // 使用默认值
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode) // 哈希到新哈希表
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

TreeNodesplit 方法

TreeNodesplit方法将当前红黑树节点分割为两个链表,一个保留在原位置,另一个移动到新位置:

final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    TreeNode<K,V> b = this;
    // 两个新的链表头
    TreeNode<K,V> loHead = null, loTail = null;
    TreeNode<K,V> hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
    for (TreeNode<K,V> e = b, next; e != null; e = next) {
        next = (TreeNode<K,V>)e.next;
        e.next = null;
        if ((e.hash & bit) == 0) {
            if ((e.prev = loTail) == null)
                loHead = e;
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }
    if (loHead != null)
        tab[index] = loHead;
    if (hiHead != null)
        tab[index + bit] = hiHead;
    // 将链表转换为红黑树
    if (lc <= UNTREEIFY_THRESHOLD)
        tab[index] = loHead.untreeify(map);
    else if (loHead != null)
        loHead.treeify(tab);
    if (hc <= UNTREEIFY_THRESHOLD)
        tab[index + bit] = hiHead.untreeify(map);
    else if (hiHead != null)
        hiHead.treeify(tab);
}

在扩容过程中,split方法会将当前红黑树节点分成两部分,然后判断链表长度是否低于树化阈值(UNTREEIFY_THRESHOLD,默认6)。如果低于阈值,则将红黑树退化为链表;否则,保持红黑树结构。


总结

通过treeifyBin方法和resize方法的源码分析,可以看出Java 8中HashMap在处理哈希冲突和扩容方面的优化手段:

  • 树化:当桶中链表长度超过阈值时,将链表转换为红黑树,以提高查询效率。
  • 扩容优先:如果哈希表容量不足,则优先进行扩容,而不是树化,以避免在小容量时引入树结构。
  • 扩容处理树节点:在扩容过程中,保留红黑树结构,并根据新链表长度决定是否退化为链表。
    这些机制共同保证了HashMap在处理大量数据时的高效性。理解这些实现细节有助于在实际使用中优化HashMap的性能。
目录
相关文章
|
16天前
|
搜索推荐 算法 Java
2025 年互联网大厂校园招聘 JAVA 工程师笔试题及备考要点解析
本文针对互联网大厂校招Java工程师笔试题进行解析,涵盖基础知识、面向对象编程、数据结构与算法、异常处理及集合框架等核心内容。从数据类型、运算符到流程控制语句,从类与对象、继承多态到数组链表、排序算法,再到异常捕获与集合框架应用,结合实际案例深入剖析,助你系统掌握考点,提升应试能力。资源链接:[点此获取](https://pan.quark.cn/s/14fcf913bae6)。
38 9
|
15天前
|
SQL Java 数据库连接
java 校招需要准备哪些内容及关键要点解析
这是一篇针对Java校招准备的详细指南,涵盖六大核心板块:扎实的Java基础知识(如数据类型、面向对象编程、集合框架)、数据库相关知识(SQL操作与管理工具)、Java开发框架(Spring、Spring Boot、MyBatis)、其他重要知识(多线程编程、网络编程、数据结构与算法)、项目经验准备以及面试技巧。文章结合技术方案与应用实例,帮助应届生全面掌握校招所需技能,从理论到实践全面提升竞争力。资源地址:[https://pan.quark.cn/s/14fcf913bae6](https://pan.quark.cn/s/14fcf913bae6)。
38 1
|
16天前
|
算法 Java 关系型数据库
校招 Java 面试基础题目解析及学习指南含新技术实操要点
本指南聚焦校招Java面试,涵盖Java 8+新特性、多线程与并发、集合与泛型改进及实操项目。内容包括Lambda表达式、Stream API、Optional类、CompletableFuture异步编程、ReentrantLock与Condition、局部变量类型推断(var)、文本块、模块化系统等。通过在线书店系统项目,实践Java核心技术,如书籍管理、用户管理和订单管理,结合Lambda、Stream、CompletableFuture等特性。附带资源链接,助你掌握最新技术,应对面试挑战。
35 2
|
16天前
|
存储 算法 Java
校招 java 面试基础题目及解析
本文围绕Java校招面试基础题目展开,涵盖平台无关性、面向对象特性(封装、继承、多态)、数据类型、关键字(static、final)、方法相关(重载与覆盖)、流程控制语句、数组与集合、异常处理等核心知识点。通过概念阐述和代码示例,帮助求职者深入理解并掌握Java基础知识,为校招面试做好充分准备。文末还提供了专项练习建议及资源链接,助力提升实战能力。
69 0
|
7月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
204 2
|
3月前
|
算法 测试技术 C语言
深入理解HTTP/2:nghttp2库源码解析及客户端实现示例
通过解析nghttp2库的源码和实现一个简单的HTTP/2客户端示例,本文详细介绍了HTTP/2的关键特性和nghttp2的核心实现。了解这些内容可以帮助开发者更好地理解HTTP/2协议,提高Web应用的性能和用户体验。对于实际开发中的应用,可以根据需要进一步优化和扩展代码,以满足具体需求。
356 29
|
3月前
|
前端开发 数据安全/隐私保护 CDN
二次元聚合短视频解析去水印系统源码
二次元聚合短视频解析去水印系统源码
108 4
|
3月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
3月前
|
移动开发 前端开发 JavaScript
从入门到精通:H5游戏源码开发技术全解析与未来趋势洞察
H5游戏凭借其跨平台、易传播和开发成本低的优势,近年来发展迅猛。接下来,让我们深入了解 H5 游戏源码开发的技术教程以及未来的发展趋势。
|
3月前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。

热门文章

最新文章

推荐镜像

更多
  • DNS