即插即用 | YOLOv8热力图可视化方法详解,揭秘AI如何「看」世界!【附完整源码】

简介: 即插即用 | YOLOv8热力图可视化方法详解,揭秘AI如何「看」世界!【附完整源码】

效果展示

先展示一下热力图显示效果:

引言

计算机视觉中,热力图(Heatmap)经常被用作一种可视化工具,用于表现网络模型的关注点或预测结果。在一些任务中,例如目标检测,关键点检测或语义分割等,模型可以通过生成一个“热力图”来表达不同位置的预测概率。这个“热力图”通常与原始输入图像的大小相同,或者稍微小一些,每一个位置(像素)的值都代表了该位置匹配特定类别或者特性的预测概率。然后,热力图还可以用于生成预测框,或者定位关键点等。由于其形式直观,便于理解,因此热力图也经常用来帮助理解和分析模型的预测逻辑和行为。

本文将介绍如何使用YOLOv8模型结合Grad-CAM(梯度加权类激活映射)技术生成YOLOv8不同网络层中的图像热力图。这是一种基于梯度的可视化方法,通过计算特征图的梯度来生成热力图。这种方法可以帮助您更直观地理解模型在不同区域的关注程度,从而提高对模型的理解和应用能力。

安装环境

在进行热力图计算前,我们需要先安装好需要的环境ultralyticsgrad-cam,命令如下:

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install grad-cam -i https://pypi.tuna.tsinghua.edu.cn/simple

完整源码

新建一个YOLOv8HeatMap.py文件,写入如下代码。然后放入YOLOv8源码中,如下图所示:

import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
import torch, yaml, cv2, os, shutil, sys
import numpy as np
np.random.seed(0)
import matplotlib.pyplot as plt
from tqdm import trange
from PIL import Image
from ultralytics.nn.tasks import attempt_load_weights
from ultralytics.utils.torch_utils import intersect_dicts
from ultralytics.utils.ops import xywh2xyxy, non_max_suppression
from pytorch_grad_cam import GradCAMPlusPlus, GradCAM, XGradCAM, EigenCAM, HiResCAM, LayerCAM, RandomCAM, EigenGradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients

def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]
    if isinstance(new_shape, int):
        new_shape = (new_shape, new_shape)

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better val mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (new_shape[1], new_shape[0])
        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im, ratio, (dw, dh)

class ActivationsAndGradients:
    """ Class for extracting activations and
    registering gradients from targetted intermediate layers """

    def __init__(self, model, target_layers, reshape_transform):
        self.model = model
        self.gradients = []
        self.activations = []
        self.reshape_transform = reshape_transform
        self.handles = []
        for target_layer in target_layers:
            self.handles.append(
                target_layer.register_forward_hook(self.save_activation))
            # Because of https://github.com/pytorch/pytorch/issues/61519,
            # we don't use backward hook to record gradients.
            self.handles.append(
                target_layer.register_forward_hook(self.save_gradient))

    def save_activation(self, module, input, output):
        activation = output

        if self.reshape_transform is not None:
            activation = self.reshape_transform(activation)
        self.activations.append(activation.cpu().detach())

    def save_gradient(self, module, input, output):
        if not hasattr(output, "requires_grad") or not output.requires_grad:
            # You can only register hooks on tensor requires grad.
            return

        # Gradients are computed in reverse order
        def _store_grad(grad):
            if self.reshape_transform is not None:
                grad = self.reshape_transform(grad)
            self.gradients = [grad.cpu().detach()] + self.gradients

        output.register_hook(_store_grad)

    def post_process(self, result):
        logits_ = result[:, 4:]
        boxes_ = result[:, :4]
        sorted, indices = torch.sort(logits_.max(1)[0], descending=True)
        return torch.transpose(logits_[0], dim0=0, dim1=1)[indices[0]], torch.transpose(boxes_[0], dim0=0, dim1=1)[indices[0]], xywh2xyxy(torch.transpose(boxes_[0], dim0=0, dim1=1)[indices[0]]).cpu().detach().numpy()
  
    def __call__(self, x):
        self.gradients = []
        self.activations = []
        model_output = self.model(x)
        post_result, pre_post_boxes, post_boxes = self.post_process(model_output[0])
        return [[post_result, pre_post_boxes]]

    def release(self):
        for handle in self.handles:
            handle.remove()

class yolov8_target(torch.nn.Module):
    def __init__(self, ouput_type, conf, ratio) -> None:
        super().__init__()
        self.ouput_type = ouput_type
        self.conf = conf
        self.ratio = ratio
    
    def forward(self, data):
        post_result, pre_post_boxes = data
        result = []
        for i in trange(int(post_result.size(0) * self.ratio)):
            if float(post_result[i].max()) < self.conf:
                break
            if self.ouput_type == 'class' or self.ouput_type == 'all':
                result.append(post_result[i].max())
            elif self.ouput_type == 'box' or self.ouput_type == 'all':
                for j in range(4):
                    result.append(pre_post_boxes[i, j])
        return sum(result)

class yolov8_heatmap:
    def __init__(self, weight, device, method, layer, backward_type, conf_threshold, ratio, show_box, renormalize):
        device = torch.device(device)
        ckpt = torch.load(weight)
        model_names = ckpt['model'].names
        model = attempt_load_weights(weight, device)
        model.info()
        for p in model.parameters():
            p.requires_grad_(True)
        model.eval()
        
        target = yolov8_target(backward_type, conf_threshold, ratio)
        target_layers = [model.model[l] for l in layer]
        method = eval(method)(model, target_layers, use_cuda=device.type == 'cuda')
        method.activations_and_grads = ActivationsAndGradients(model, target_layers, None)
        
        colors = np.random.uniform(0, 255, size=(len(model_names), 3)).astype(np.uint8)
        self.__dict__.update(locals())
    
    def post_process(self, result):
        result = non_max_suppression(result, conf_thres=self.conf_threshold, iou_thres=0.65)[0]
        return result

    def draw_detections(self, box, color, name, img):
        xmin, ymin, xmax, ymax = list(map(int, list(box)))
        cv2.rectangle(img, (xmin, ymin), (xmax, ymax), tuple(int(x) for x in color), 2)
        cv2.putText(img, str(name), (xmin, ymin - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.8, tuple(int(x) for x in color), 2, lineType=cv2.LINE_AA)
        return img

    def renormalize_cam_in_bounding_boxes(self, boxes, image_float_np, grayscale_cam):
        """Normalize the CAM to be in the range [0, 1] 
        inside every bounding boxes, and zero outside of the bounding boxes. """
        renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
        for x1, y1, x2, y2 in boxes:
            x1, y1 = max(x1, 0), max(y1, 0)
            x2, y2 = min(grayscale_cam.shape[1] - 1, x2), min(grayscale_cam.shape[0] - 1, y2)
            renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())    
        renormalized_cam = scale_cam_image(renormalized_cam)
        eigencam_image_renormalized = show_cam_on_image(image_float_np, renormalized_cam, use_rgb=True)
        return eigencam_image_renormalized
    
    def process(self, img_path, save_path):
        # img process
        img = cv2.imread(img_path)
        img = letterbox(img)[0]
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = np.float32(img) / 255.0
        tensor = torch.from_numpy(np.transpose(img, axes=[2, 0, 1])).unsqueeze(0).to(self.device)
        
        try:
            grayscale_cam = self.method(tensor, [self.target])
        except AttributeError as e:
            return
        
        grayscale_cam = grayscale_cam[0, :]
        cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True)
        
        pred = self.model(tensor)[0]
        pred = self.post_process(pred)
        if self.renormalize:
            cam_image = self.renormalize_cam_in_bounding_boxes(pred[:, :4].cpu().detach().numpy().astype(np.int32), img, grayscale_cam)
        if self.show_box:
            for data in pred:
                data = data.cpu().detach().numpy()
                cam_image = self.draw_detections(data[:4], self.colors[int(data[4:].argmax())], f'{self.model_names[int(data[4:].argmax())]} {float(data[4:].max()):.2f}', cam_image)
        
        cam_image = Image.fromarray(cam_image)
        cam_image.save(save_path)
    
    def __call__(self, img_path, save_path, grad_name):
        # remove dir if exist
        # if os.path.exists(save_path):
        #     shutil.rmtree(save_path)
        # make dir if not exist
        if not os.path.exists(save_path):
            os.makedirs(save_path, exist_ok=True)

        if os.path.isdir(img_path):
            for img_path_ in os.listdir(img_path):
                name = img_path_.rsplit('.')[0]
                end_name = img_path_.rsplit('.')[-1]
                self.process(f'{img_path}/{img_path_}', f'{save_path}/{name}_{grad_name}.{end_name}')
        else:
            self.process(img_path, f'{save_path}/result_{grad_name}.png')
        
def get_params():
    # 绘制热力图方法列表
    grad_list = [
        'GradCAM',
        'GradCAMPlusPlus',
        'XGradCAM',
        'EigenCAM',
        'HiResCAM',
        'LayerCAM',
        'RandomCAM',
        'EigenGradCAM'
    ]
    # 自定义需要绘制热力图的层索引,可以用列表绘制不同层的热力图,如[10, 12, 14, 16, 18],将多层的话会将结果进行汇总到一张图上
    layers = [10, 12, 14, 16, 18]
    for grad_name in grad_list:
        params = {
            'weight': 'yolov8n.pt', # 训练好的权重路径
            'device': 'cuda:0',  # cpu或者cuda:0
            'method': grad_name, # GradCAMPlusPlus, GradCAM, XGradCAM, EigenCAM, HiResCAM, LayerCAM, RandomCAM, EigenGradCAM
            'layer': layers,  # 计算梯度的层, 指定层的索引
            'backward_type': 'class', # class, box, all
            'conf_threshold': 0.2, # 置信度阈值默认0.2, 根据情况调节
            'ratio': 0.02, # 建议0.02-0.1,取前多少数据,默认是0.02,只取置信度排序后的前百分之2的目标进行计算热力图。
            'show_box': False,  #是否显示检测框
            'renormalize': True   #是否优化热力图显示结果
        }
        yield params

if __name__ == '__main__':
    for each in get_params():
        model = yolov8_heatmap(**each)
        # model第一个参数:单张图片路径或者图片文件夹路径; 第二个参数:保存路径; 第三个参数:绘制热力图方法
        # model(r'images/00052.jpg', 'result', each['method'])
        model(r'images', 'result', each['method'])

源码详解

上述代码实现了一个用于生成YOLOv8网络热力图的工具,它使用了pytorch_grad_cam库来计算梯度激活图(GradCAM)。主要包含以下几个部分:

导入需要的库

import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
import torch, yaml, cv2, os, shutil, sys
import numpy as np
np.random.seed(0)
import matplotlib.pyplot as plt
from tqdm import trange
from PIL import Image
from ultralytics.nn.tasks import attempt_load_weights
from ultralytics.utils.torch_utils import intersect_dicts
from ultralytics.utils.ops import xywh2xyxy, non_max_suppression
from pytorch_grad_cam import GradCAMPlusPlus, GradCAM, XGradCAM, EigenCAM, HiResCAM, LayerCAM, RandomCAM, EigenGradCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, scale_cam_image
from pytorch_grad_cam.activations_and_gradients import ActivationsAndGradients

letterbox 函数

对输入图像进行预处理,包括缩放和填充,以适应特定的尺寸要求,同时保持宽高比。

def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
• 1
  • im: 输入图像。
  • new_shape: 目标图像的新尺寸,默认为 640x640。
  • color: 用于边缘填充的颜色,默认为灰色(114, 114, 114)。
  • auto: 是否自动调整填充大小以满足步长约束。
  • scaleFill: 是否拉伸图像以填充新形状。
  • scaleup: 是否允许放大图像。
  • stride: 模型步长,用于确保输出尺寸是该数值的倍数。

ActivationsAndGradients 类

一个辅助类,用于从模型的中间层提取激活和梯度。它注册了前向传播钩子以在每个目标层捕获这些信息。

yolov8_target 类

根据给定的输出类型(‘class’、‘box’ 或 ‘all’)和置信度阈值,从模型输出中选择感兴趣的检测结果。

yolov8_heatmap 类

class yolov8_heatmap:
    def __init__(self, weight, cfg, device, method, layer, backward_type, conf_threshold, ratio):

初始化时加载模型、设置热力图计算方法、指定要计算梯度的层,以及其它相关参数。

process 方法:处理单个图像或图像文件夹,生成热力图并保存结果。

draw_detections 方法:在图像上绘制检测框。

renormalize_cam_in_bounding_boxes 方法:将热力图归一化到边界框内。

get_params 函数:生成参数字典,用于遍历不同的热力图方法。

get_params函数详解

def get_params():
    # 绘制热力图方法列表
    grad_list = [
        'GradCAM',
        'GradCAMPlusPlus',
        'XGradCAM',
        'EigenCAM',
        'HiResCAM',
        'LayerCAM',
        'RandomCAM',
        'EigenGradCAM'
    ]
    # 自定义需要绘制热力图的层索引,可以用列表绘制不同层的热力图,如[10, 12, 14, 16, 18],将多层的话会将结果进行汇总到一张图上
    layers = [10, 12, 14, 16, 18]
    for grad_name in grad_list:
        params = {
            'weight': 'yolov8n.pt', # 训练好的权重路径
            'device': 'cuda:0',  # cpu或者cuda:0
            'method': grad_name, # GradCAMPlusPlus, GradCAM, XGradCAM, EigenCAM, HiResCAM, LayerCAM, RandomCAM, EigenGradCAM
            'layer': layers,  # 计算梯度的层, 指定层的索引
            'backward_type': 'class', # class, box, all
            'conf_threshold': 0.2, # 置信度阈值默认0.2, 根据情况调节
            'ratio': 0.02, # 建议0.02-0.1,取前多少数据,默认是0.02,只取置信度排序后的前百分之2的目标进行计算热力图。
            'show_box': False,  #是否显示检测框
            'renormalize': True   #是否优化热力图显示结果
        }
        yield params

这段代码定义了一个名为 get_params 的函数,它用于设置并返回一个字典格式的生成器,包含了一系列参数,这些参数是用于配置和运行yolov8_heatmap 类的。下面我将逐个解释这些参数的含义和作用。

参数说明:

weight
  • 'rtdetr-l.pt': 这个参数指定了模型的权重文件。在这种情况下,它是一个预先训练的YOLOv8模型的权重文件。这个文件包含了模型的所有训练参数,是模型运行的基础。
device
  • 'cuda:0': 这个参数指定了模型运行的设备。在这里,'cuda:0' 表明模型将在第一个NVIDIA GPU上运行。如果没有GPU或希望在CPU上运行,可以将其更改为 'cpu'
method
  • 有8种热力图生成算法可选:GradCAMPlusPlus, GradCAM, XGradCAM, EigenCAM, HiResCAM, LayerCAM, RandomCAM, EigenGradCAM
layer
  • '[10]': 这个参数指定了用于生成热图的网络层。可以自行选择单一层,如[10]或者多个层列表[10, 12, 14, 16, 18],最终会对多层结果汇总到一张热力图上。
backward_type
  • 'all': 这个参数决定了反向传播的类型。它可以是 'class''box''all''class' 仅关注类别预测,'box' 仅关注边界框预测,而 'all' 结合了两者。
conf_threshold
  • 0.2: 这是一个置信度阈值,用于过滤模型的预测。仅当模型对其预测的置信度高于0.2时,这些预测才会被考虑。
ratio

取前多少数据,默认是0.02,就是只取置信度由大到小排序后的前百分之2的目标进行计算热力图。

这个可能比较难理解,一般0.02就可以了,这个值不是越大越好,最大建议是0.1。

主函数部分

创建yolov8_heatmap实例,并使用get_params生成的参数遍历不同的热力图方法,为指定的图像或图像文件夹生成热力图。

if __name__ == '__main__':
    for each in get_params():
        model = yolov8_heatmap(**each)
        # model第一个参数:单张图片路径或者图片文件夹路径; 第二个参数:保存路径; 第三个参数:绘制热力图方法
        # model(r'images/00052.jpg', 'result', each['method'])
        model(r'images', 'result', each['method'])

参数说明

第一个参数:单张图片路径或者图片文件夹路径;

第二个参数:‘result’,为保存路径;

第三个参数:绘制热力图方法。

通过循环可一次性保存8种热力图计算结果。可自行挑选结果较好的热力图计算方式进行展示,图片保存的命名规则为图片名+热力图计算方法名称.jpg。保存的结果如下:

整体而言,这个工具可以用来分析YOLOv8模型的特征可视化,特别是在目标检测任务中,帮助理解模型是如何关注图像的特定区域来做出预测的,可以增加论文的结果展示对比,丰富论文不同模型的对比角度,还是十分实用的。

相关文章
|
1月前
|
人工智能 自然语言处理 物联网
GEO优化方法有哪些?2025企业抢占AI流量必看指南
AI的不断重塑传统的信息入口之际,用户的搜索行为也从单一的百度、抖音的简单的查找答案的模式,逐渐转向了对DeepSeek、豆包、文心一言等一系列的AI对话平台的更加深入的探索和体验。DeepSeek的不断迭代优化同时,目前其月活跃的用户已破1.6亿,全网的AI用户规模也已超过6亿,这无疑为其下一阶段的迅猛发展提供了坚实的基础和广泛的市场空间。
|
2月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
380 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
如何让AI更“聪明”?VLM模型的优化策略与测试方法全解析​
本文系统解析视觉语言模型(VLM)的核心机制、推理优化、评测方法与挑战。涵盖多模态对齐、KV Cache优化、性能测试及主流基准,助你全面掌握VLM技术前沿。建议点赞收藏,深入学习。
656 8
|
2月前
|
人工智能
AI推理方法演进:Chain-of-Thought、Tree-of-Thought与Graph-of-Thought技术对比分析
大语言模型推理能力不断提升,从早期的规模扩展转向方法创新。2022年Google提出Chain-of-Thought(CoT),通过展示推理过程显著提升模型表现。随后,Tree-of-Thought(ToT)和Graph-of-Thought(GoT)相继出现,推理结构由线性链条演进为树状分支,最终发展为支持多节点连接的图网络。CoT成本低但易错传,ToT支持多路径探索与回溯,GoT则实现非线性、多维推理,适合复杂任务。三者在计算成本与推理能力上形成递进关系,推动AI推理向更接近人类思维的方向发展。
232 4
|
2月前
|
存储 人工智能 达摩院
|
4月前
|
机器学习/深度学习 人工智能 数据可视化
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
本项目基于YOLOv8与PyQt5开发,实现虫子种类识别,支持图片、视频、摄像头等多种输入方式,具备完整训练与部署流程,开箱即用,附带数据集与源码,适合快速搭建高精度昆虫识别系统。
基于YOLOv8的AI虫子种类识别项目|完整源码数据集+PyQt5界面+完整训练流程+开箱即用!
|
3月前
|
人工智能 JSON 监控
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解
AI Agent的评估需覆盖其整个生命周期,从开发到部署,综合考量事实准确性、推理路径、工具选择、结构化输出、多轮对话及实时性能等维度。LangSmith作为主流评估平台,提供了一套全面的评估框架,支持12种评估技术,包括基于标准答案、程序性分析及观察性评估。这些技术可有效监控Agent各组件表现,确保其在真实场景中的稳定性和可靠性。
1720 0
从零开始构建AI Agent评估体系:12种LangSmith评估方法详解
|
1月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
398 29

热门文章

最新文章