基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类(1)https://developer.aliyun.com/article/1536800
二、模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能
。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
。
YOLO各版本性能对比:
其主要网络结构如下:
2. 数据集准备与训练
本文使用的玉米叶片病害
数据集共包含3852
张图片,分为4个病害类别
,分别是['锈病','灰叶斑病','健康','枯叶病']
。部分数据集及类别信息如下:
图片数据集的存放格式如下,在项目目录中新建datasets
目录,同时将分类的图片分为训练集与验证集放入Data
目录下。
3.模型训练
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
#coding:utf-8 from ultralytics import YOLO import matplotlib matplotlib.use('TkAgg') if __name__ == '__main__': # 训练模型配置文件路径 yolo_yaml_path = 'ultralytics/cfg/models/v8/yolov8-cls.yaml' # 官方预训练模型路径 pre_model_path = "yolov8n-cls.pt" # 加载预训练模型 model = YOLO(yolo_yaml_path).load(pre_model_path) # 模型训练 model.train(data='datasets/Data', epochs=150, batch=4)
4. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
本文训练结果如下:
通过accuracy_top1
图片准确率曲线图我们可以发现,该模型在验证集的准确率约为0.99
,结果还是很不错的。
5. 利用模型进行推理
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/trian/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
#coding:utf-8 from ultralytics import YOLO import cv2 # 所需加载的模型目录 path = 'models/best.pt' # 需要检测的图片地址 img_path = "TestFiles/RS_Rust 1598.JPG" # 加载模型 model = YOLO(path, task='classify') # 检测图片 results = model(img_path) print(results) res = results[0].plot() # res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR) cv2.imshow("YOLOv8 Detection", res) cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
以上便是关于此款玉米叶片病害智能诊断与防治系统
的原理与代码介绍。基于此模型,博主用python
与Pyqt5
开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测
。