基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类(2)

简介: 基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类

基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分类(1)https://developer.aliyun.com/article/1536800

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的深度学习技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性,在精度和速度方面都具有尖端性能。在之前YOLO 版本的基础上,YOLOv8 引入了新的功能和优化,使其成为广泛应用中各种物体检测任务的理想选择。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

YOLO各版本性能对比:

其主要网络结构如下:

2. 数据集准备与训练

本文使用的玉米叶片病害数据集共包含3852张图片,分为4个病害类别,分别是['锈病','灰叶斑病','健康','枯叶病']。部分数据集及类别信息如下:

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
import matplotlib
matplotlib.use('TkAgg')
if __name__ == '__main__':
    # 训练模型配置文件路径
    yolo_yaml_path = 'ultralytics/cfg/models/v8/yolov8-cls.yaml'
    # 官方预训练模型路径
    pre_model_path = "yolov8n-cls.pt"
    # 加载预训练模型
    model = YOLO(yolo_yaml_path).load(pre_model_path)
    # 模型训练
    model.train(data='datasets/Data', epochs=150, batch=4)

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

本文训练结果如下:

通过accuracy_top1图片准确率曲线图我们可以发现,该模型在验证集的准确率约为0.99,结果还是很不错的。

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/RS_Rust 1598.JPG"
# 加载模型
model = YOLO(path, task='classify')
# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款玉米叶片病害智能诊断与防治系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

相关文章
|
1天前
|
数据可视化 数据挖掘 定位技术
Python 中的地理信息系统
【7月更文挑战第16天】 - GIS在地图制作、空间分析及各行业(如城市规划、资源管理)中至关重要。 - Python凭借其易用性和丰富库(如Geopandas、Matplotlib、Folium)简化了地理数据处理和可视化。 - 开发者需先安装Geopandas、Matplotlib和Folium库。 - Geopandas用于数据处理,Matplotlib绘制静态地图,Folium创建交互式地图。 - 示例代码展示了地图绘制、数据整合、空间查询、动态
10 0
|
3天前
|
机器学习/深度学习 人工智能 算法
深度学习在医疗影像诊断中的应用与挑战
随着人工智能技术的飞速发展,深度学习在医疗影像诊断领域中展现出前所未有的潜力。本文将深入探讨深度学习技术如何革新传统的医疗影像分析流程,提高诊断的准确性和效率,并讨论实施过程中遇到的主要挑战。通过对比分析深度学习模型与传统方法在处理医学影像数据时的性能差异,揭示深度学习在图像识别、特征提取和模式分类方面的优势。同时,指出数据隐私、模型解释性及跨域泛化能力等关键问题,为未来研究提供方向。
|
4天前
|
监控 前端开发 API
实战指南:使用Python Flask与WebSocket实现高效的前后端分离实时系统
【7月更文挑战第18天】构建实时Web应用,如聊天室,可借助Python的Flask和WebSocket。安装Flask及Flask-SocketIO库,创建Flask应用,处理WebSocket事件。前端模板通过Socket.IO库连接服务器,发送和接收消息。运行应用,实现实时通信。此示例展现了Flask结合WebSocket实现前后端实时交互的能力。
|
7天前
|
监控 网络协议 安全
由于楼层自动化系统的复杂性和多样性,很难给出一个通用的Python代码示例,因为每个系统可能使用不同的硬件、通信协议和软件接口。
由于楼层自动化系统的复杂性和多样性,很难给出一个通用的Python代码示例,因为每个系统可能使用不同的硬件、通信协议和软件接口。
|
Python 编解码 Shell
|
18小时前
|
存储 算法 搜索推荐
告别低效编程!Python算法设计与分析中,时间复杂度与空间复杂度的智慧抉择!
【7月更文挑战第22天】在编程中,时间复杂度和空间复杂度是评估算法效率的关键。时间复杂度衡量执行时间随数据量增加的趋势,空间复杂度关注算法所需的内存。在实际应用中,开发者需权衡两者,根据场景选择合适算法,如快速排序(平均O(n log n),最坏O(n^2),空间复杂度O(log n)至O(n))适合大规模数据,而归并排序(稳定O(n log n),空间复杂度O(n))在内存受限或稳定性要求高时更有利。通过优化,如改进基准选择或减少复制,可平衡这两者。理解并智慧地选择算法是提升代码效率的关键。
|
3天前
|
存储 开发者 Python
从理论到实践:Python中Trie树与Suffix Tree的完美结合,开启编程新篇章!
【7月更文挑战第19天】在编程实践中,Trie树和Suffix Tree优化了字符串处理。Trie树用于快速拼写检查,如在构建词库后,能高效判断单词是否存在。Suffix Tree则助力文本相似度检测,找寻共同子串。通过Python示例展示了Trie树插入和搜索方法,并指出Suffix Tree虽复杂但能提升性能。结合两者,实现复杂功能,展现数据结构的强大。
16 3