基于YOLOv8深度学习的复杂场景下船舶目标检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

简介: 基于YOLOv8深度学习的复杂场景下船舶目标检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测

前言

在复杂的海上环境中,船舶目标检测是一项至关重要的任务。海上交通安全、海洋资源管理以及国家边防安全等领域都极度依赖于能够准确识别和监控船舶的能力。使用YOLOv8编写的复杂场景下船舶目标检测系统通过高效地识别各类船只,能够大大提高海上交通管理的安全性、效率和响应速度。该系统可以处理海上环境中的光照变化、天气情况和海面反射等干扰,进而实现对船舶的准确检测,对于维护海洋秩序、保障航运安全和促进海洋经济的发展具有重要意义。

复杂场景下船舶目标检测系统的应用场景包括

港口管理和安全:监控港口区域,确保船舶安全地进出港口,预防相撞事故的发生。

海洋交通监控:实时追踪海上交通流,并识别违规或异常航行行为,维护航线秩序。

海域安全巡逻:在国家边境或重要水域进行安全巡逻,识别非法入侵或可疑活动。

海洋环境保护:监测环境保护区内的船舶活动,防止非法捕捞和污染事件。

搜救行动:在海上搜救行动中快速识别和定位失事船只,提高搜救效率和成功率。

船舶流量和渔业管理:分析船只密集区域的船舶流量,对渔船进行监控和管理,保护渔业资源。

总结来说,复杂场景下船舶目标检测系统的开发和应用,显著提高了海上安全监管和自然资源管理的能力。通过准确和高效的船只检测,该系统为海上事务处理提供了强有力的技术支撑,促进了海洋经济的可持续发展,同时对于加强国家海洋安全具有重大的战略意义。随着技术的不断进步和应用的拓展,该系统将在全球海洋治理和航运业中发挥日益重要的作用。

博主通过搜集实际场景中的船舶相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的复杂场景下船舶目标检测系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可用于实时检测各类复杂场景种的船舶位置,并显示目标数量;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

界面参数设置说明

置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;

交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

IoU:全称为Intersection over

Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

(1)图片检测演示

点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:

点击目标下拉框后,可以选定指定目标的结果信息进行显示。

点击保存按钮,会对检测结果进行保存,存储路径为:save_data目录下。

注:1.右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行目标切换。所有检测结果均在左下方表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

(2)视频检测演示

点击视频按钮,打开选择需要检测的视频,就会自动显示检测结果,再次点击可以关闭视频。

点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击,可关闭摄像头。

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。

视频检测保存演示如下:

保存的检测结果文件如下:

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

2. 数据集准备与训练

本文使用的数据集为各类复杂场景下的船舶图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含5090张图片,其中训练集包含4576张图片验证集包含509张图片测试包含5张图片

该数据集是专为研究和解决复杂场景下船舶目标检测问题而设计包含多样性丰富的环境,如交通繁忙的港口、船只密集的渔业区,以及船与岸边混合交通场景。与传统的船舶目标检测数据集不同,本数据集特意考虑了在实际应用场景中常见但在数据集中经常被忽视的问题。例如,船舶在图像或视频帧中不一定是主体,有时仅作为背景出现。此外,数据集还包括船只部分或完全被其他对象遮挡的情况这些特点使得本数据集非常适用于开发和评估目标检测算法在复杂、多变和部分遮挡条件下的性能。数据集旨在推动船舶目标检测和相关领域的研究进展,以满足日益增长的实际应用需求,例如航海安全、渔业管理以及海洋环境保护等。

部分图像及标注如下图所示:

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入GrapeData目录下。

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\BoatDetection\datasets\Data\train
val: E:\MyCVProgram\BoatDetection\datasets\Data\val
nc: 1
names: ['boat']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载预训练模型
model = YOLO("yolov8n.pt")
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/Data/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5值为0.6,还有进一步提升的空间。

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/train/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/000114.jpg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
res = cv2.resize(res,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款复杂场景下船舶目标检测系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

相关文章
|
2月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
4月前
|
机器学习/深度学习 人工智能 监控
河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化进程加快和塑料制品使用量增加,河道中的塑料垃圾问题日益严重。塑料瓶作为河道漂浮垃圾的主要类型,不仅破坏水体景观,还威胁水生生态系统的健康。传统的人工巡查方式效率低、成本高,难以满足实时监控与治理的需求。
|
4月前
|
机器学习/深度学习 传感器 人工智能
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在人工智能和计算机视觉的快速发展中,火灾检测与火焰识别逐渐成为智慧城市、公共安全和智能监控的重要研究方向。一个高质量的数据集往往是推动相关研究的核心基础。本文将详细介绍一个火灾火焰识别数据集,该数据集共包含 2200 张图片,并已按照 训练集(train)、验证集(val)、测试集(test) 划分,同时配有对应的标注文件,方便研究者快速上手模型训练与评估。
火灾火焰识别数据集(2200张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
4月前
|
机器学习/深度学习 人工智能 自动驾驶
7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
|
4月前
|
机器学习/深度学习 人工智能 监控
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
4月前
|
机器学习/深度学习 数据采集 算法
PCB电路板缺陷检测数据集(近千张图片已划分、已标注)| 适用于YOLO系列深度学习检测任务【数据集分享】
在现代电子制造中,印刷电路板(PCB)是几乎所有电子设备的核心组成部分。随着PCB设计复杂度不断增加,人工检测PCB缺陷不仅效率低,而且容易漏检或误判。因此,利用计算机视觉和深度学习技术对PCB缺陷进行自动检测成为行业发展的必然趋势。
PCB电路板缺陷检测数据集(近千张图片已划分、已标注)| 适用于YOLO系列深度学习检测任务【数据集分享】
|
机器学习/深度学习 人工智能 监控
单车、共享单车已标注数据集(图片已划分、已标注)|适用于深度学习检测任务【数据集分享】
数据是人工智能的“燃料”。一个高质量、标注精准的单车与共享单车数据集,不仅能够推动学术研究的进步,还能为智慧交通、智慧城市的建设提供有力支撑。 在计算机视觉领域,研究者们常常会遇到“数据鸿沟”问题:公开数据集与真实业务需求之间存在不匹配。本次分享的数据集正是为了弥补这一不足,使得研究人员与工程师能够快速切入单车检测领域,加速模型从实验室走向真实应用场景。
|
3月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
前端开发 JavaScript 关系型数据库
基于Python+Vue开发的电影订票管理系统
该项目是基于Python+Vue开发的电影订票管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的电影订票管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
193 1

推荐镜像

更多