基于YOLOv8深度学习的智能草莓病害检测与分割系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割(1)

简介: 基于YOLOv8深度学习的智能草莓病害检测与分割系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割

前言

智能草莓病害检测、识别与分割系统利用了YOLOv8这一高级深度学习算法,能够高效地准确识别并分割草莓中的病害区域。在农业生产中,病害的早期发现和准确诊断是减少作物损失和提高产品质量的关键。这一系统使得农业监测自动化成为可能,不仅节约人工成本,还大幅提高了检测的精确度和速度,是智能农业中不可或缺的一环,对提升农作物管理水平、保障粮食安全和推动农业现代化进程有着重大意义。

智能草莓病害检测、识别与分割系统的应用场景包括

智能农业:在智能温室和规模化种植场中实施病害监测,提高病害管理的效率与时效性。

农业研究:辅助研究人员进行病害数据收集和分析,促进病害防治技术的创新和发展。

农业保险:为农作物投保提供确凿的病害发生证据,简化理赔流程并降低欺诈风险。

农产品质量控制:在收获和包装前检测病害,确保农产品质量,减少流通领域的损失。

精准农业:为实现精准施肥、灌溉和病害处理提供数据支持,优化农田管理。

农业教育与培训:提供一个实时的、交互式的教学平台,增强农业学生和从业者的实践技能。

总结而言,智能草莓病害检测、识别与分割系统通过提供高效的病害识别工具,为农业领域带来了技术革新。它不仅能够显著提升作物生产的质量和效率,也有助于农业从业者更好地理解和管理病害问题。随着智能农业技术的日益成熟,这类系统将为确保全球粮食安全和持续推动农业现代化贡献重要的力量。

博主通过搜集草莓病害的相关数据图片,根据YOLOv8的目标分割技术,基于python与Pyqt5开发了一款界面简洁的草莓病害检测与分割系统,可支持图片、视频以及摄像头检测,同时可以将图片、视频以及摄像头的检测结果进行保存本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

检测结果说明:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行7种草莓病害检测与分割,病害类型分别为: ['角斑病','炭疽病','花枯病','灰霉病','叶斑病','白粉病果','白粉病叶']
2. 支持图片、图片批量、视频及摄像头进行检测分割;
3. 可显示总分割面积占比以及单个目标的分割面积占比
4. 界面可实时显示目标位置分割结果分割面积占比置信度用时等信息;
5. 结果保存:支持图片视频摄像头分割结果保存

界面参数设置说明

  1. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  2. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;
  3. 窗口1:显示分割结果:表示是否在检测图片中显示分割结果,默认勾选;
  4. 窗口1:显示检测框与标签:表示是否在检测图片中显示检测框与标签,默认勾选;
  5. 窗口2:显示Mask或者显示原始分割图片:表示在窗口2中显示分割的Mask或者原始图片分割内容

IoU:全称为Intersection over

Union,表示交并比。在目标检测中,它用于衡量模型生成的候选框与原标记框之间的重叠程度。IoU值越大,表示两个框之间的相似性越高。通常,当IoU值大于0.5时,认为可以检测到目标物体。这个指标常用于评估模型在特定数据集上的检测准确度。

显示Mask或者显示原始分割图片选项的功能效果如下:

(1)图片检测演示

1.点击打开图片按钮,选择需要检测的图片,或者点击打开文件夹按钮,选择需要批量检测图片所在的文件夹,操作演示如下:

2.点击目标下拉框后,可以选定指定目标的结果信息进行显示。
3.
点击保存按钮,会对图片检测结果进行保存,存储路径为:save_data目录下。

4.点击表格中的指定行,界面会显示该行表格所写的信息内容。

注:右侧目标位置默认显示置信度最大一个目标位置,可用下拉框进行信息切换。所有检测结果均在表格中显示。

单个图片检测操作如下:

批量图片检测操作如下:

点击保存按钮,会对图片的检测结果进行保存,共会保存3种类型结果,分别是:检测分割结果标识图片、分割的Mask图片以及原图分割后的图片。存储在save_data目录下,保存结果如下:

(2)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.点击保存按钮,会对视频检测结果进行保存,同样会保存3种类型结果,分别是:检测分割结果标识视频、分割Mask视频以及原视频分割后的视频,存储路径为:save_data目录下。

视频检测演示:

视频保存演示:

视频检测保存结果如下:

(3)摄像头检测演示

1.点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

2.点击保存按钮,可以进行摄像头实时图像的检测结果保存

摄像头检测演示:

摄像头保存演示:

摄像头检测保存结果如下:

(4)检测结果保存

点击保存按钮后,会将当前选择的图片【含批量图片】、视频或者摄像头的分割结果进行保存。结果会存储在save_data目录下,保存内容如下:

基于YOLOv8深度学习的智能草莓病害检测与分割系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、目标分割(2)https://developer.aliyun.com/article/1536738

相关文章
|
4月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
506 27
|
11月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
455 73
|
10月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
296 18
|
11月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
300 31
|
12月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
419 8
|
Linux C语言 开发者
源码安装Python学会有用还能装逼 | 解决各种坑
相信朋友们都看过这个零基础学习Python的开篇了
710 0
源码安装Python学会有用还能装逼 | 解决各种坑
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
265 102
|
2月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
296 104

推荐镜像

更多