基于YOLOv8深度学习的智能车牌检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

简介: 基于YOLOv8深度学习的智能车牌检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

前言

智能车牌检测与识别系统通过使用最新的YOLOv8与PaddleOCR算法能够迅速、准确地在多种环境下实现实时车牌的检测和识别。这项技术在现代交通管理中具有重要作用,因为它能够自动化和简化许多涉及车辆识别和记录的流程。这样的系统不仅提高了工作效率,还降低了人工错误,提供了便捷且可靠的数据支持,对于加强交通安全、辅助执法以及促进智慧城市构建具有深远意义。

智能车牌检测与识别系统的应用场景包括

交通违章抓拍:自动检测违章车辆,并记录车牌号码,用于交通违规的证据收集和处理。

停车场管理:车牌识别用于自动化的停车场出入管理,实现无人值守收费系统,提升停车场的服务效率。

门禁系统:在小区或企业区域的门禁系统中应用,仅允许认可的车辆进入,增强安全管理。

城市交通监控:监测和分析城市交通流量,以辅助交通规划和拥堵管理。

电子收费(ETC):高速公路和其他收费公路上使用车牌识别系统来自动化收费流程,减少交通延误。

车辆找寻与监控:在大型公共场所辅助找寻特定车辆,或是监控特定车辆的行驶情况。

总而言之,智能车牌检测与识别系统的实施为交通管理和城市安全带来了显著改进。这一系统不仅提高了相关领域的工作效率和处理速度,也加强了安全监管能力。在未来,随着智慧城市和智能交通系统的持续发展,智能车牌识别技术将会扮演更加关键的角色,为城市的可持续和有序发展贡献重要力量。

博主通过搜集不同绿牌与蓝牌的车牌相关图片,根据YOLOv8的目标检测技术结合PaddleOCR识别技术,基于python与Pyqt5开发了一款界面简洁的智能车牌检测与识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:


检测结果界面如下:


一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行实时绿牌与蓝牌这两种车牌的检测与识别;
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置识别结果置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:

点击保存按钮,会对图片或视频检测结果进行保存,存储路径为:save_data目录下。

单个图片检测操作如下:


批量图片检测操作如下:

点击表格中的指定行,可以显示指定图片的检测结果。


(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。


(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。


(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。



二、车牌检测与识别流程

要进行车牌识别,主要分为两步。

第一步:进行车辆车牌位置的检测,本文使用yolov8,通过16770张图片训练了一个可用于检测绿牌与蓝牌的车牌检测模型来进行车牌检测,检测精度为0.995

第二步:对第一步检测出的车牌进行识别,直接使用的是PaddleOCR对于车牌进行识别。

下面对这些内容进行详细介绍

2.1 第一步:车牌检测

本文主要基于yolov8训练了一个车牌检测模型,用于进行车牌位置的检测,主要步骤如下:

2.1.1 yolov8环境配置

pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple

yolov8源码地址:https://github.com/ultralytics/ultralytics

YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

2.1.2 数据集准备与处理

本文训练模型使用的数据集为CPDD2020绿牌数据集与部分CCPD2019的蓝牌数据集

数据集下载地址:https://github.com/detectRecog/CCPD

CCPD是一个大型的、多样化的、经过仔细标注的中国城市车牌开源数据集。CCPD数据集主要分为CCPD2019数据集和CCPD2020(CCPD-Green)数据集。CCPD2019数据集车牌类型仅有普通车牌(蓝色车牌),CCPD2020数据集车牌类型仅有新能源车牌(绿色车牌)。

在CCPD数据集中,每张图片仅包含一张车牌,车牌的车牌省份主要为皖。CCPD中的每幅图像都包含大量的标注信息,但是CCPD数据集没有专门的标注文件,每张图像的文件名就是该图像对应的数据标注。

标注最困难的部分是注释四个顶点的位置。为了完成这项任务,数据发布者首先在10k图像上手动标记四个顶点的位置。然后设计了一个基于深度学习的检测模型,在对该网络进行良好训练后,对每幅图像的四个顶点位置进行自动标注。最后,数据发布者雇用了7名兼职工人在两周内纠正这些标注。CCPD提供了超过250k个独特的车牌图像和详细的注释。每张图像的分辨率为720(宽度)× 1160(高)× 3(通道)。实际上,这种分辨率足以保证每张图像中的车牌清晰可辨,但是该数据有些图片标注可能不准。不过总的来说CCPD数据集非常推荐研究车牌识别算法的人员学习使用。

本文使用的数据集一共包含16770张车牌数据。部分图片如下:


数据集中图片的命名规则如下:

图片命名:“025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-0_0_22_27_27_33_16-37-15.jpg”

解释:

1. 025:车牌区域占整个画面的比例;
2. 95_113: 车牌水平和垂直角度, 水平95°, 竖直113°
3. 154&383_386&473:标注框左上、右下坐标,左上(154, 383), 右下(386, 473)
4. 86&473_177&454_154&383_363&402:标注框四个角点坐标,顺序为右下、左下、左上、右上
5. 0_0_22_27_27_33_16:车牌号码映射关系如下: 第一个0为省份 对应省份字典provinces中的’皖’,;第二个0是该车所在地的地市一级代码,对应地市一级代码字典alphabets的’A’;后5位为字母和文字, 查看车牌号ads字典,如22为Y,27为3,33为9,16为S,最终车牌号码为皖AY339S

省份:[“皖”, “沪”, “津”, “渝”, “冀”, “晋”, “蒙”, “辽”, “吉”, “黑”, “苏”, “浙”, “京”, “闽”, “赣”,

“鲁”, “豫”, “鄂”, “湘”, “粤”, “桂”, “琼”, “川”, “贵”, “云”, “藏”, “陕”, “甘”, “青”, “宁”,

“新”]

地市:[‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’,

‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’,‘X’, ‘Y’, ‘Z’]

车牌字典:[‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’,

‘Q’, ‘R’, ‘S’, ‘T’, ‘U’, ‘V’, ‘W’, ‘X’,‘Y’, ‘Z’, ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’,

‘6’, ‘7’, ‘8’, ‘9’]

制作车牌检测数据集:

这个数据集的检测和识别标签都在图片名中,可以直接通过上述图片的命名规则,从图片读取出来,再写入txt文件中即可。代码如下:

import shutil
import cv2
import os
def txt_translate(path, txt_path):
    print(path)
    print(txt_path)
    for filename in os.listdir(path):
        # print(filename)
        list1 = filename.split("-", 3)  # 第一次分割,以减号'-'做分割
        subname = list1[2]
        list2 = filename.split(".", 1)
        subname1 = list2[1]
        if subname1 == 'txt':
            continue
        lt, rb = subname.split("_", 1)  # 第二次分割,以下划线'_'做分割
        lx, ly = lt.split("&", 1)
        rx, ry = rb.split("&", 1)
        width = int(rx) - int(lx)
        height = int(ry) - int(ly)  # bounding box的宽和高
        cx = float(lx) + width / 2
        cy = float(ly) + height / 2  # bounding box中心点
        img = cv2.imread(path + filename)
        if img is None:  # 自动删除失效图片(下载过程有的图片会存在无法读取的情况)
            print(path + filename)
            os.remove(path + filename)
            continue
        width = width / img.shape[1]
        height = height / img.shape[0]
        cx = cx / img.shape[1]
        cy = cy / img.shape[0]
        txtname = filename.split(".", 1)
        txtfile = txt_path + txtname[0] + ".txt"
        # 绿牌是第0类,蓝牌是第1类
        with open(txtfile, "w") as f:
            f.write(str(0) + " " + str(cx) + " " + str(cy) + " " + str(width) + " " + str(height))
if __name__ == '__main__':
    # det图片存储地址
    trainDir = r"G:/datasets/CarPlateData/CCPD2020/ccpd_green/train/"
    validDir = r"G:/datasets/CarPlateData/CCPD2020/ccpd_green/val/"
    testDir = r"G:/datasets/CarPlateData/CCPD2020/ccpd_green/test/"
    # det txt存储地址
    train_txt_path = r"G:/datasets/CarPlateData/CCPD2020/ccpd_green/train_labels/"
    val_txt_path = r"G:/datasets/CarPlateData/CCPD2020/ccpd_green/val_labels/"
    test_txt_path = r"G:/datasets/CarPlateData/CCPD2020/ccpd_green/test_labels/"
    txt_translate(trainDir, train_txt_path)
    txt_translate(validDir, val_txt_path)
    txt_translate(testDir, test_txt_path)

制作完成后,如上图所示。

2.1.3 目标检测模型训练

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集、验证集与测试集放入PlateData目录下。

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\CarPlateDetection\datasets\PlateData\images\train  # train images (relative to 'path') 128 images
val: E:\MyCVProgram\CarPlateDetection\datasets\PlateData\images\val  # val images (relative to 'path') 128 images
# number of classes
nc: 2
# Classes
names: ['GreenLicense','BlueLicense']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载预训练模型
model = YOLO("yolov8n.pt")
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/PlateData/data.yaml', epochs=300, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

各损失函数作用说明:

定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;

分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;

动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。

本文训练结果如下:

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型目标检测的mAP@0.5平均值为0.995,结果相当不错。

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/013671875-93_102-226&489_426&558-426&558_234&546_226&489_417&494-0_0_5_25_33_24_24_33-86-80.jpg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:


可以发现,该模型能够很好的检测出车牌区域。下面我们需要对检测出的车牌进行识别。

2.2 第二步:车牌识别

本文的车牌识别直接使用的是开源的PaddleOCR检测模型。地址:https://github.com/PaddlePaddle/PaddleOCR

2.2.1环境配置

pip install paddlepaddle2.5.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install paddleocr
2.7.0.3 -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install shapely -i https://pypi.tuna.tsinghua.edu.cn/simple

2.2.2 模型使用demo


from paddleocr import PaddleOCR, draw_ocr
# Paddleocr目前支持的多语言语种可以通过修改lang参数进行切换
# 例如`ch`, `en`, `fr`, `german`, `korean`, `japan`
cls_model_dir='paddleModels/whl/cls/ch_ppocr_mobile_v2.0_cls_infer'
rec_model_dir='paddleModels/whl/rec/ch/ch_PP-OCRv4_rec_infer'
ocr = PaddleOCR(use_angle_cls=True, lang="ch", det=False,cls_model_dir=cls_model_dir,rec_model_dir=rec_model_dir)  # need to run only once to download and load model into memory
img_path = '22.png'
result = ocr.ocr(img_path, cls=True)
license_name, conf = result[0][0][1]
if '·' in license_name:
    license_name = license_name.replace('·', '')
print(license_name,conf)

2.2.3加载ocr模型

# 加载ocr模型
cls_model_dir = 'paddleModels/whl/cls/ch_ppocr_mobile_v2.0_cls_infer'
rec_model_dir = 'paddleModels/whl/rec/ch/ch_PP-OCRv4_rec_infer'
ocr = PaddleOCR(use_angle_cls=False, lang="ch", det=False, cls_model_dir=cls_model_dir,rec_model_dir=rec_model_dir)

2.2.4 获取车牌位置信息

# 所需加载的模型目录
path = 'models/best.pt'
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 int.ersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)[0]
# 车牌区域信息
location_list = results.boxes.xyxy.tolist()

2.2.5抠出上述车牌位置

if len(location_list) >= 1:
    location_list = [list(map(int, e)) for e in location_list]
    # 截取每个车牌区域的照片
    license_imgs = []
    for each in location_list:
        x1, y1, x2, y2 = each
        cropImg = now_img[y1:y2, x1:x2]
        license_imgs.append(cropImg)
        cv2.imshow('111',cropImg)
        cv2.waitKey(0)


2.2.6使用ocr进行车牌识别

def get_license_result(ocr,image):
    """
    image:输入的车牌截取照片
    输出,车牌号与置信度
    """
    result = ocr.ocr(image, cls=True)[0]
    if result:
        license_name, conf = result[0][1]
        if '·' in license_name:
            license_name = license_name.replace('·', '')
        return license_name, conf
    else:
        return None, None
# 车牌识别结果
lisence_res = []
conf_list = []
for each in license_imgs:
    license_num, conf = get_license_result(ocr, each)
    if license_num:
        lisence_res.append(license_num)
        conf_list.append(conf)
    else:
        lisence_res.append('无法识别')
        conf_list.append(0)

2.2.7将识别结果显示在图片上

for text, box in zip(lisence_res, location_list):
        now_img = tools.drawRectBox(now_img, box, text, fontC)

2.2.8完整代码

#coding:utf-8
from ultralytics import YOLO
import cv2
import detect_tools as tools
from PIL import ImageFont
from paddleocr import PaddleOCR
def get_license_result(ocr,image):
    """
    image:输入的车牌截取照片
    输出,车牌号与置信度
    """
    result = ocr.ocr(image, cls=True)[0]
    if result:
        license_name, conf = result[0][1]
        if '·' in license_name:
            license_name = license_name.replace('·', '')
        return license_name, conf
    else:
        return None, None
# 需要检测的图片地址
img_path = "TestFiles/013671875-93_102-226&489_426&558-426&558_234&546_226&489_417&494-0_0_5_25_33_24_24_33-86-80.jpg"
now_img = tools.img_cvread(img_path)
fontC = ImageFont.truetype("Font/platech.ttf", 50, 0)
# 加载ocr模型
cls_model_dir = 'paddleModels/whl/cls/ch_ppocr_mobile_v2.0_cls_infer'
rec_model_dir = 'paddleModels/whl/rec/ch/ch_PP-OCRv4_rec_infer'
ocr = PaddleOCR(use_angle_cls=False, lang="ch", det=False, cls_model_dir=cls_model_dir,rec_model_dir=rec_model_dir)
# 所需加载的模型目录
path = 'models/best.pt'
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 int.ersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)
# 检测图片
results = model(img_path)[0]
location_list = results.boxes.xyxy.tolist()
if len(location_list) >= 1:
    location_list = [list(map(int, e)) for e in location_list]
    # 截取每个车牌区域的照片
    license_imgs = []
    for each in location_list:
        x1, y1, x2, y2 = each
        cropImg = now_img[y1:y2, x1:x2]
        license_imgs.append(cropImg)
        cv2.imshow('111',cropImg)
        cv2.waitKey(0)
    # 车牌识别结果
    lisence_res = []
    conf_list = []
    for each in license_imgs:
        license_num, conf = get_license_result(ocr, each)
        if license_num:
            lisence_res.append(license_num)
            conf_list.append(conf)
        else:
            lisence_res.append('无法识别')
            conf_list.append(0)
    for text, box in zip(lisence_res, location_list):
        now_img = tools.drawRectBox(now_img, box, text, fontC)
now_img = cv2.resize(now_img,dsize=None,fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", now_img)
cv2.waitKey(0)


以上便是关于此款智能车牌检测与识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

相关文章
|
10月前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
422 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
9月前
|
数据可视化 测试技术 Linux
基于Python后端构建多种不同的系统终端界面研究
【10月更文挑战第10天】本研究探讨了利用 Python 后端技术构建多样化系统终端界面的方法,涵盖命令行界面(CLI)、图形用户界面(GUI)及 Web 界面。通过分析各种界面的特点、适用场景及关键技术,展示了如何使用 Python 标准库和第三方库(如 `argparse`、`click`、`Tkinter` 和 `PyQt`)实现高效、灵活的界面设计。旨在提升用户体验并满足不同应用场景的需求。
130 1
|
4月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
|
2月前
|
数据采集 安全 BI
用Python编程基础提升工作效率
一、文件处理整明白了,少加两小时班 (敲暖气管子)领导让整理100个Excel表?手都干抽筋儿了?Python就跟铲雪车似的,哗哗给你整利索!
84 11
|
4月前
|
人工智能 Java 数据安全/隐私保护
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
140 28
|
4月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
4月前
|
Python
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
64 4
|
4月前
|
设计模式 机器学习/深度学习 前端开发
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
|
4月前
|
数据采集 搜索推荐 C语言
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。
|
4月前
|
机器学习/深度学习 设计模式 API
Python 高级编程与实战:构建 RESTful API
本文深入探讨了使用 Python 构建 RESTful API 的方法,涵盖 Flask、Django REST Framework 和 FastAPI 三个主流框架。通过实战项目示例,详细讲解了如何处理 GET、POST 请求,并返回相应数据。学习这些技术将帮助你掌握构建高效、可靠的 Web API。

推荐镜像

更多