【保姆级教程|YOLOv8改进】【4】添加双层路由注意力机制:BiLevelRoutingAttention,性能和效率十分不错

简介: 【保姆级教程|YOLOv8改进】【4】添加双层路由注意力机制:BiLevelRoutingAttention,性能和效率十分不错

1.BiLevelRoutingAttention简介

论文发表时间:2023.03.15

github地址:https://github.com/rayleizhu/BiFormer

paper地址:https://arxiv.org/pdf/2303.08810.pdf

摘要:作为视觉变换器的核心构建模块,注意力是捕获远程依赖性的强大工具。然而,这种强大功能是有代价的:由于需要计算所有空间位置之间的成对令牌交互,它会带来巨大的计算负担和沉重的内存占用。一系列工作试图通过引入手工制作的和内容不可知的稀疏性到注意力中来减轻这个问题,例如限制注意力操作在局部窗口、轴向条纹或扩展窗口内部。与这些方法相反,我们提出了一种新颖的动态稀疏注意力通过双层路由来实现更灵活的计算分配与内容感知。具体来说,对于一个查询,不相关的键值对首先在粗略的区域级别被过滤掉,然后在剩余候选区域(即路由区域)的并集中应用细粒度令牌到令牌的注意力。我们提供了一个简单而有效的提出的双层路由注意力实现它利用稀疏性来节省计算和内存,同时只涉及GPU友好的密集矩阵乘法。基于提出的双层路由注意力构建的一个新的通用视觉变换器,名为BiFormer,随后被提出。由于BiFormer以一种查询自适应的方式只关注小部分相关令牌,不受其他不相关令牌的分心,因此它在良好的性能和高计算效率方面都享有优势,特别是在密集预测任务中。在图像分类、目标检测和语义分割等多个计算机视觉任务中的实证结果验证了我们设计的有效性。

论文主要亮点如下:

  • 为原始注意力机制引入了一种新颖的双层次路由机制,这使得在查询自适应的方式下可以实现内容感知的稀疏模式。
  • 将双层次路由注意力作为基本构件,我们提出了一个通用的视觉变换器命名为BiFormer。
  • 在各种计算机视觉任务上的实验结果,包括图像分类、目标检测和语义分割,显示所提出的BiFormer在类似模型大小下,实现了比基线模型显著更好的性能。

1.1 网络结构

1.2 稀疏性应用方式

1.3 性能对比

2.YOLOv8添加注意力机制

替换位置与替换后网络结构示意

添加位置

替换后的YOLOv8网络结构如下:

定义注意力机制类

ultralytics/nn/modules/block.py中添加如下代码块,并定义BiLevelRoutingAttention类:

并在ultralytics/nn/modules/block.py中最上方添加如下代码:

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:

ultralytics/nn/tasks.py 上方导入BiLevelRoutingAttention类名,并在parse_model解析函数中添加如下代码:

elif m in [BiLevelRoutingAttention]:
            c2 = ch[f]
            args = [c2, *args[0:]]

ultralytics/cfg/models/v8文件夹下新建yolov8-BiLevelRoutingAttention.yaml文件,内容如下:

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 1, BiLevelRoutingAttention, []] # 16
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 22 (P5/32-large)
  - [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLO
if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-BiLevelRoutingAttention.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=50, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train11/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

相关文章
|
4月前
|
机器学习/深度学习 Java 网络架构
YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)
YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)
297 0
|
3月前
|
机器学习/深度学习 计算机视觉
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
|
3月前
|
机器学习/深度学习
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
|
3月前
|
机器学习/深度学习 数据采集 自然语言处理
【注意力机制重大误区】网络模型增加注意力机制后,性能就一定会得到提升?有哪些影响因素?
【注意力机制重大误区】网络模型增加注意力机制后,性能就一定会得到提升?有哪些影响因素?
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了轻量级CNNs和注意力机制在移动设备上的应用。文章提出了一种名为GhostNetV2的新架构,结合了硬件友好的DFC注意力机制,强化了特征表达能力和全局信息捕获,同时保持低计算成本和高效推理。GhostNetV2在ImageNet上以167M FLOPs达到75.3%的top-1准确率,优于同类模型。创新点包括DFC注意力、模型结构优化和效率提升。源代码可在GitHub和MindSpore平台上找到。此外,还提到了YOLOv8的相关实现和任务配置。
|
4月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv8 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】
本教程介绍了如何在YOLOv8中使用动态卷积提升网络性能和灵活性。动态卷积利用注意力机制动态选择和组合卷积核,适应输入数据特征,解决了轻量级CNN的局限。文中提供了详细步骤教读者如何添加和修改代码,包括在`conv.py`中添加`Dynamic_conv2d`模块,更新`init.py`、`task.py`和`yaml`配置文件。此外,还分享了完整代码和进阶技巧,帮助深度学习初学者实践目标检测。参考[YOLOv8改进](https://blog.csdn.net/m0_67647321/category_12548649.html)专栏获取更多详情。
|
4月前
|
机器学习/深度学习 算法 PyTorch
【SAHI】即插即用| SAHI操作可有效解决小目标检测过程中的难点!实现涨点
【SAHI】即插即用| SAHI操作可有效解决小目标检测过程中的难点!实现涨点
303 1
|
4月前
|
机器学习/深度学习 Python
【初窥CBAM】实操版即插即用的注意力机制模块
【初窥CBAM】实操版即插即用的注意力机制模块
155 0
【初窥CBAM】实操版即插即用的注意力机制模块
|
4月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)
YOLOv5改进 | 2023 | SCConv空间和通道重构卷积(精细化检测,又轻量又提点)
183 1
|
4月前
|
机器学习/深度学习 算法 数据可视化
YOLO+混合注意力机制 | YOLOv5再加4.3%才可以做对手,Transformer混合设计依旧可以卷
YOLO+混合注意力机制 | YOLOv5再加4.3%才可以做对手,Transformer混合设计依旧可以卷
137 0