【保姆级教程|YOLOv8改进】【4】添加双层路由注意力机制:BiLevelRoutingAttention,性能和效率十分不错

简介: 【保姆级教程|YOLOv8改进】【4】添加双层路由注意力机制:BiLevelRoutingAttention,性能和效率十分不错

1.BiLevelRoutingAttention简介

论文发表时间:2023.03.15

github地址:https://github.com/rayleizhu/BiFormer

paper地址:https://arxiv.org/pdf/2303.08810.pdf

摘要:作为视觉变换器的核心构建模块,注意力是捕获远程依赖性的强大工具。然而,这种强大功能是有代价的:由于需要计算所有空间位置之间的成对令牌交互,它会带来巨大的计算负担和沉重的内存占用。一系列工作试图通过引入手工制作的和内容不可知的稀疏性到注意力中来减轻这个问题,例如限制注意力操作在局部窗口、轴向条纹或扩展窗口内部。与这些方法相反,我们提出了一种新颖的动态稀疏注意力通过双层路由来实现更灵活的计算分配与内容感知。具体来说,对于一个查询,不相关的键值对首先在粗略的区域级别被过滤掉,然后在剩余候选区域(即路由区域)的并集中应用细粒度令牌到令牌的注意力。我们提供了一个简单而有效的提出的双层路由注意力实现它利用稀疏性来节省计算和内存,同时只涉及GPU友好的密集矩阵乘法。基于提出的双层路由注意力构建的一个新的通用视觉变换器,名为BiFormer,随后被提出。由于BiFormer以一种查询自适应的方式只关注小部分相关令牌,不受其他不相关令牌的分心,因此它在良好的性能和高计算效率方面都享有优势,特别是在密集预测任务中。在图像分类、目标检测和语义分割等多个计算机视觉任务中的实证结果验证了我们设计的有效性。

论文主要亮点如下:

  • 为原始注意力机制引入了一种新颖的双层次路由机制,这使得在查询自适应的方式下可以实现内容感知的稀疏模式。
  • 将双层次路由注意力作为基本构件,我们提出了一个通用的视觉变换器命名为BiFormer。
  • 在各种计算机视觉任务上的实验结果,包括图像分类、目标检测和语义分割,显示所提出的BiFormer在类似模型大小下,实现了比基线模型显著更好的性能。

1.1 网络结构

1.2 稀疏性应用方式

1.3 性能对比

2.YOLOv8添加注意力机制

替换位置与替换后网络结构示意

添加位置

替换后的YOLOv8网络结构如下:

定义注意力机制类

ultralytics/nn/modules/block.py中添加如下代码块,并定义BiLevelRoutingAttention类:

并在ultralytics/nn/modules/block.py中最上方添加如下代码:

修改指定文件

ultralytics/nn/modules/__init__.py文件中的添加如下代码:

ultralytics/nn/tasks.py 上方导入BiLevelRoutingAttention类名,并在parse_model解析函数中添加如下代码:

elif m in [BiLevelRoutingAttention]:
            c2 = ch[f]
            args = [c2, *args[0:]]

ultralytics/cfg/models/v8文件夹下新建yolov8-BiLevelRoutingAttention.yaml文件,内容如下:

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
  - [-1, 1, BiLevelRoutingAttention, []] # 16
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 19 (P4/16-medium)
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 22 (P5/32-large)
  - [[16, 19, 22], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3.加载配置文件并训练

加载yolov8-BiLevelRoutingAttention.yaml配置文件,并运行train.py训练代码:

#coding:utf-8
from ultralytics import YOLO
if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-BiLevelRoutingAttention.yaml')
    model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='datasets/TomatoData/data.yaml', epochs=50, batch=4)

注意观察,打印出的网络结构是否正常修改,如下图所示:

4.模型推理

模型训练完成后,我们使用训练好的模型对图片进行检测:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
# path = 'models/best2.pt'
path = 'runs/detect/train11/weights/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/Riped tomato_8.jpeg"
# 加载预训练模型
# conf  0.25  object confidence threshold for detection
# iou 0.7 intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# 检测图片
results = model(img_path)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=2,fy=2,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

相关文章
|
6月前
|
机器学习/深度学习 Java 网络架构
YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)
YOLOv5改进 | TripletAttention三重注意力机制(附代码+机制原理+添加教程)
340 0
|
6月前
|
机器学习/深度学习 人工智能 算法
【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
【PyTorch深度强化学习】TD3算法(双延迟-确定策略梯度算法)的讲解及实战(超详细 附源码)
1098 1
|
自然语言处理 算法 数据挖掘
自蒸馏:一种简单高效的优化方式
背景知识蒸馏(knowledge distillation)指的是将预训练好的教师模型的知识通过蒸馏的方式迁移至学生模型,一般来说,教师模型会比学生模型网络容量更大,模型结构更复杂。对于学生而言,主要增益信息来自于更强的模型产出的带有更多可信信息的soft_label。例如下右图中,两个“2”对应的hard_label都是一样的,即0-9分类中,仅“2”类别对应概率为1.0,而soft_label
自蒸馏:一种简单高效的优化方式
|
1月前
|
机器学习/深度学习 算法 TensorFlow
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。
273 0
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
|
25天前
|
人工智能 人机交互 智能硬件
从大模型的原理到提示词优化
本文介绍了大语言模型(LLM)的基本概念及其工作原理,重点探讨了AI提示词(Prompt)的重要性和几种有效技巧,包括角色设定、One-shot/Few-shot、任务拆解和思维链。通过实例解析,展示了如何利用这些技巧提升LLM的输出质量和准确性,强调了提供高质量上下文信息对优化LLM表现的关键作用。
42 0
|
4月前
|
机器学习/深度学习 人工智能 分布式计算
算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化
机器学习中的超参数调优是提升模型性能的关键步骤,包括网格搜索、随机搜索、贝叶斯优化和遗传算法等方法。网格搜索通过穷举所有可能的超参数组合找到最优,但计算成本高;随机搜索则在预设范围内随机采样,降低计算成本;贝叶斯优化使用代理模型智能选择超参数,效率高且适应性强;遗传算法模拟生物进化,全局搜索能力强。此外,还有多目标优化、异步并行优化等高级技术,以及Hyperopt、Optuna等优化库来提升调优效率。实践中,应结合模型类型、数据规模和计算资源选择合适的调优策略。
175 0
算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化
|
5月前
|
机器学习/深度学习 计算机视觉
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
【保姆级教程|YOLOv8添加注意力机制】【2】在C2f结构中添加ShuffleAttention注意力机制并训练
|
5月前
|
机器学习/深度学习
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
【保姆级教程|YOLOv8添加注意力机制】【1】添加SEAttention注意力机制步骤详解、训练及推理使用
|
5月前
|
机器学习/深度学习 数据采集 自然语言处理
【注意力机制重大误区】网络模型增加注意力机制后,性能就一定会得到提升?有哪些影响因素?
【注意力机制重大误区】网络模型增加注意力机制后,性能就一定会得到提升?有哪些影响因素?
|
6月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】 YOLOv8 更换骨干网络之GhostNetV2 长距离注意力机制增强廉价操作,构建更强端侧轻量型骨干 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了轻量级CNNs和注意力机制在移动设备上的应用。文章提出了一种名为GhostNetV2的新架构,结合了硬件友好的DFC注意力机制,强化了特征表达能力和全局信息捕获,同时保持低计算成本和高效推理。GhostNetV2在ImageNet上以167M FLOPs达到75.3%的top-1准确率,优于同类模型。创新点包括DFC注意力、模型结构优化和效率提升。源代码可在GitHub和MindSpore平台上找到。此外,还提到了YOLOv8的相关实现和任务配置。