基于YOLOv8深度学习的100种蝴蝶智能识别系统【python源码+Pyqt5界面+数据集+训练代码】目标识别、深度学习实战

简介: 基于YOLOv8深度学习的100种蝴蝶智能识别系统【python源码+Pyqt5界面+数据集+训练代码】目标识别、深度学习实战

前言

蝴蝶智能识别系统的创建是生物多样性监测和保护领域的一大进步。基于YOLOv8算法的这一系统,能够识别多达100种蝴蝶,这对于生态学研究、环境监测、自然保育和科普教育都具有极大的价值。蝴蝶作为环境变迁的指示物种之一,对其进行监测有助于了解生态系统的健康状况。该系统提高了识别的精确度和效率,使得非专业人士也能轻松识别和了解蝴蝶种类。

蝴蝶智能识别系统的应用场景包括:

生态研究:科研人员可以在野外调查或室内实验中使用本系统,快速准确地识别野生蝴蝶种类,有效地支撑生态和环境研究。

环境监测:环保人员利用该系统对蝴蝶种群进行监控,分析环境质量变化对生物多样性的影响。

自然保护区管理:保护区工作人员可以利用此系统监测蝴蝶种群的变化,用于科学管理和保护工作。

教育与普及:教育工作者和自然博物馆可以利用此系统为公众提供互动学习的工具,提高公众对自然和生物多样性的认识与保护意识。

生物多样性数据库建设:通过智能识别系统收集的数据能丰富生物多样性数据库,为未来的研究提供参考。

生态旅游:生态旅游从业者和游客使用该系统了解所在地区蝴蝶种类,提高生态旅游的体验质量和教育价值。

总结来说,蝴蝶智能识别系统的开发为环境和生态研究提供了一个有效的技术工具,为生物多样性保护和相关科普教育开拓了新的途径。此系统的推广使用有助于促进自然环境保护意识的提升,并在全球范围内推动可持续发展目标的实现。它是自然科学与人工智能技术结合的一个典范,允许普通人更容易地接触和理解自然界的奇妙。

博主通过搜集不同蝴蝶的相关数据图片并整理,根据YOLOv8的深度学习技术训练识别模型,并基于python与Pyqt5开发了一款界面简洁的100种蝴蝶智能识别系统,可支持图片、批量图片、视频以及摄像头检测

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行100种不同蝴蝶的类型识别;
2. 支持图片、批量图片、视频以及摄像头检测
3. 界面可实时显示识别结果置信度用时等信息;

(1)图片检测演示

单个图片检测操作如下:

点击打开图片按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:

批量图片检测操作如下:

点击打开文件夹按钮,选择需要检测的文件夹【注意是选择文件夹】,可进行批量图片检测,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果双击路径单元格,会看到图片的完整路径。操作演示如下:

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行

其主要网络结构如下:

2. 数据集准备与训练

本文使用的蝴蝶数据集共包含13094张图片,分为100个蝴蝶类别。部分数据集及类别信息如下:

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入Data目录下。

3.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO
# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':
    model.train(data='datasets/Data', epochs=300, batch=4)
    # results = model.val()

4. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:

本文训练结果如下:

通过accuracy_top1图片准确率曲线图我们可以发现,该模型的最高准确率约为0.96,结果还是很不错的。

5. 利用模型进行推理

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。

图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/005.jpg"
# 加载模型
model = YOLO(path, task='classify')
# 检测图片
results = model(img_path)
print(results)
res = results[0].plot()
# res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR)
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:

以上便是关于此款蝴蝶智能识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测

相关文章
|
2月前
|
机器学习/深度学习 城市大脑 安全
基于深度学习的客流量预测系统
本文分析了疫情后旅游市场复苏带动地铁客流增长的背景,探讨了客流预测对交通运营的重要性,综述了基于多源数据与深度学习模型(如LSTM、STGCN)的研究进展,并介绍了CNN与RNN在人流预测中的技术原理及系统实现路径。
|
2月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
2月前
|
机器学习/深度学习 传感器 算法
基于yolo8的深度学习室内火灾监测识别系统
本研究基于YOLO8算法构建室内火灾监测系统,利用计算机视觉技术实现火焰与烟雾的实时识别。相比传统传感器,该系统响应更快、精度更高,可有效提升火灾初期预警能力,保障生命财产安全,具有重要的应用价值与推广前景。
|
Linux C语言 开发者
源码安装Python学会有用还能装逼 | 解决各种坑
相信朋友们都看过这个零基础学习Python的开篇了
741 0
源码安装Python学会有用还能装逼 | 解决各种坑
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
319 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
345 104
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
275 103