前言
智能肺炎诊断系统运用了先进的YOLOv8深度学习算法,它可通过自动分析病人X射线肺部图像,快速地识别出肺炎征状。这项技术的重要性体现在提升诊断的速度和准确率,减轻医疗工作人员的负担,以及改善疾病监测和响应速度,特别是在公共卫生事件和疫情大流行期间。
智能肺炎诊断系统的应用场景主要包括以下几个方面:
医院急诊部门
:快速筛查病患是否患有肺炎,缩短等待时间,做出迅速精准的治疗决策。
农村和偏远地区医疗中心
:在专业医疗资源不足的地区,提供高质量的诊断服务,减少严重病情的漏诊率。
移动医疗设施和野战医院
:在流动性场合或临时医疗设置中,提供即时的肺炎检测能力。
公共卫生监测和防控
:对于流感季节或肺炎疫情防控,智能诊断系统可以作为一个关键的监测和控制工具。
长期照护设施和养老院
:在高风险群体中,定期监控患者的肺部健康状况,及时发现潜在的呼吸系统问题。
总结而言
,智能肺炎诊断系统的应用可以极大提高医疗系统响应肺炎以及其他肺部疾病的能力。这不仅对提高个体患者的医疗体验和治疗结果有好处,同时也增强了公共卫生系统面对流行性疾病挑战时的整体应对能力,尤其在资源有限或紧急情况中,它的价值更为凸显。
博主通过搜集病人X射线肺部
的相关数据图片,根据YOLOv8的深度学习技术,基于python与Pyqt5
开发了一款界面简洁的智能肺炎诊断系统
,可支持图片、批量图片、视频以及摄像头检测
。
软件初始界面如下图所示:
检测结果界面如下:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可通过病人X射线肺部图像判断病人是否患有肺炎
,分为肺炎
与健康
两种状态;
2. 支持图片、批量图片、视频以及摄像头检测
;
3. 界面可实时显示识别结果
、置信度
、用时
等信息;
(1)图片检测演示
单个图片检测操作如下:
点击打开图片
按钮,选择需要检测的图片,就会显示检测结果。操作演示如下:
批量图片检测操作如下:
点击打开文件夹
按钮,选择需要检测的文件夹
【注意是选择文件夹】,可进行批量图片检测
,表格中会有所有图片的检测结果信息,点击表格中的指定行,会显示指定行图片的检测结果
,双击路径单元格,会看到图片的完整路径
。操作演示如下:
(2)视频检测演示
点击打开视频
按钮,打开选择需要检测的视频,就会自动显示检测结果。
(3)摄像头检测演示
点击打开摄像头
按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头
按钮,可关闭摄像头。
二、模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一种前沿的检测与识别技术,它基于先前YOLO版本在目标检测与识别任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
。
其主要网络结构如下:
2. 数据集准备与训练
本文使用的X射线肺部图像
数据集共包含5856
张图片,分为2个类别
,分别是:['肺炎','健康']
。部分数据集及类别信息如下:
图片数据集的存放格式如下,在项目目录中新建datasets
目录,同时将分类的图片分为训练集与验证集放入Data
目录下。
3.模型训练
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
#coding:utf-8 from ultralytics import YOLO # 加载预训练模型 model = YOLO("yolov8n-cls.pt") if __name__ == '__main__': model.train(data='datasets/Data', epochs=300, batch=4) # results = model.val()
4. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
本文训练结果如下:
通过图片准确率曲线图我们可以发现,该模型的最高准确率约为0.88
,结果还是很不错的。
5. 利用模型进行推理
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/trian/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
#coding:utf-8 from ultralytics import YOLO import cv2 # 所需加载的模型目录 path = 'models/best.pt' # 需要检测的图片地址 img_path = "TestFiles/IM-0003-0001.jpeg" # 加载模型 model = YOLO(path, task='classify') # 检测图片 results = model(img_path) res = results[0].plot() # res = cv2.resize(res,dsize=None,fx=0.3,fy=0.3,interpolation=cv2.INTER_LINEAR) cv2.imshow("YOLOv8 Detection", res) cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
以上便是关于此款智能肺炎诊断系统
的原理与代码介绍。基于此模型,博主用python
与Pyqt5
开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、批量图片、视频及摄像头进行检测
。