【保姆级教程】【YOLOv8替换主干网络】【1】使用efficientViT替换YOLOV8主干网络结构(2)

简介: 【保姆级教程】【YOLOv8替换主干网络】【1】使用efficientViT替换YOLOV8主干网络结构

【保姆级教程】【YOLOv8替换主干网络】【1】使用efficientViT替换YOLOV8主干网络结构(1)https://developer.aliyun.com/article/1536649

第1步–添加efficientVit.py文件,并导入

ultralytics/nn/backbone目录下,新建backbone网络文件efficientVit.py,内容如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import itertools
from timm.models.layers import SqueezeExcite
import numpy as np
import itertools
__all__ = ['EfficientViT_M0', 'EfficientViT_M1', 'EfficientViT_M2', 'EfficientViT_M3', 'EfficientViT_M4', 'EfficientViT_M5']
class Conv2d_BN(torch.nn.Sequential):
    def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
                 groups=1, bn_weight_init=1, resolution=-10000):
        super().__init__()
        self.add_module('c', torch.nn.Conv2d(
            a, b, ks, stride, pad, dilation, groups, bias=False))
        self.add_module('bn', torch.nn.BatchNorm2d(b))
        torch.nn.init.constant_(self.bn.weight, bn_weight_init)
        torch.nn.init.constant_(self.bn.bias, 0)
    @torch.no_grad()
    def switch_to_deploy(self):
        c, bn = self._modules.values()
        w = bn.weight / (bn.running_var + bn.eps)**0.5
        w = c.weight * w[:, None, None, None]
        b = bn.bias - bn.running_mean * bn.weight / \
            (bn.running_var + bn.eps)**0.5
        m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
            0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups)
        m.weight.data.copy_(w)
        m.bias.data.copy_(b)
        return m
def replace_batchnorm(net):
    for child_name, child in net.named_children():
        if hasattr(child, 'fuse'):
            setattr(net, child_name, child.fuse())
        elif isinstance(child, torch.nn.BatchNorm2d):
            setattr(net, child_name, torch.nn.Identity())
        else:
            replace_batchnorm(child)
            
class PatchMerging(torch.nn.Module):
    def __init__(self, dim, out_dim, input_resolution):
        super().__init__()
        hid_dim = int(dim * 4)
        self.conv1 = Conv2d_BN(dim, hid_dim, 1, 1, 0, resolution=input_resolution)
        self.act = torch.nn.ReLU()
        self.conv2 = Conv2d_BN(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim, resolution=input_resolution)
        self.se = SqueezeExcite(hid_dim, .25)
        self.conv3 = Conv2d_BN(hid_dim, out_dim, 1, 1, 0, resolution=input_resolution // 2)
    def forward(self, x):
        x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x))))))
        return x
class Residual(torch.nn.Module):
    def __init__(self, m, drop=0.):
        super().__init__()
        self.m = m
        self.drop = drop
    def forward(self, x):
        if self.training and self.drop > 0:
            return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1,
                                              device=x.device).ge_(self.drop).div(1 - self.drop).detach()
        else:
            return x + self.m(x)
class FFN(torch.nn.Module):
    def __init__(self, ed, h, resolution):
        super().__init__()
        self.pw1 = Conv2d_BN(ed, h, resolution=resolution)
        self.act = torch.nn.ReLU()
        self.pw2 = Conv2d_BN(h, ed, bn_weight_init=0, resolution=resolution)
    def forward(self, x):
        x = self.pw2(self.act(self.pw1(x)))
        return x
class CascadedGroupAttention(torch.nn.Module):
    r""" Cascaded Group Attention.
    Args:
        dim (int): Number of input channels.
        key_dim (int): The dimension for query and key.
        num_heads (int): Number of attention heads.
        attn_ratio (int): Multiplier for the query dim for value dimension.
        resolution (int): Input resolution, correspond to the window size.
        kernels (List[int]): The kernel size of the dw conv on query.
    """
    def __init__(self, dim, key_dim, num_heads=8,
                 attn_ratio=4,
                 resolution=14,
                 kernels=[5, 5, 5, 5],):
        super().__init__()
        self.num_heads = num_heads
        self.scale = key_dim ** -0.5
        self.key_dim = key_dim
        self.d = int(attn_ratio * key_dim)
        self.attn_ratio = attn_ratio
        qkvs = []
        dws = []
        for i in range(num_heads):
            qkvs.append(Conv2d_BN(dim // (num_heads), self.key_dim * 2 + self.d, resolution=resolution))
            dws.append(Conv2d_BN(self.key_dim, self.key_dim, kernels[i], 1, kernels[i]//2, groups=self.key_dim, resolution=resolution))
        self.qkvs = torch.nn.ModuleList(qkvs)
        self.dws = torch.nn.ModuleList(dws)
        self.proj = torch.nn.Sequential(torch.nn.ReLU(), Conv2d_BN(
            self.d * num_heads, dim, bn_weight_init=0, resolution=resolution))
        points = list(itertools.product(range(resolution), range(resolution)))
        N = len(points)
        attention_offsets = {}
        idxs = []
        for p1 in points:
            for p2 in points:
                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(
            torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer('attention_bias_idxs',
                             torch.LongTensor(idxs).view(N, N))
    @torch.no_grad()
    def train(self, mode=True):
        super().train(mode)
        if mode and hasattr(self, 'ab'):
            del self.ab
        else:
            self.ab = self.attention_biases[:, self.attention_bias_idxs]
    def forward(self, x):  # x (B,C,H,W)
        B, C, H, W = x.shape
        trainingab = self.attention_biases[:, self.attention_bias_idxs]
        feats_in = x.chunk(len(self.qkvs), dim=1)
        feats_out = []
        feat = feats_in[0]
        for i, qkv in enumerate(self.qkvs):
            if i > 0: # add the previous output to the input
                feat = feat + feats_in[i]
            feat = qkv(feat)
            q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.d], dim=1) # B, C/h, H, W
            q = self.dws[i](q)
            q, k, v = q.flatten(2), k.flatten(2), v.flatten(2) # B, C/h, N
            attn = (
                (q.transpose(-2, -1) @ k) * self.scale
                +
                (trainingab[i] if self.training else self.ab[i])
            )
            attn = attn.softmax(dim=-1) # BNN
            feat = (v @ attn.transpose(-2, -1)).view(B, self.d, H, W) # BCHW
            feats_out.append(feat)
        x = self.proj(torch.cat(feats_out, 1))
        return x
class LocalWindowAttention(torch.nn.Module):
    r""" Local Window Attention.
    Args:
        dim (int): Number of input channels.
        key_dim (int): The dimension for query and key.
        num_heads (int): Number of attention heads.
        attn_ratio (int): Multiplier for the query dim for value dimension.
        resolution (int): Input resolution.
        window_resolution (int): Local window resolution.
        kernels (List[int]): The kernel size of the dw conv on query.
    """
    def __init__(self, dim, key_dim, num_heads=8,
                 attn_ratio=4,
                 resolution=14,
                 window_resolution=7,
                 kernels=[5, 5, 5, 5],):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.resolution = resolution
        assert window_resolution > 0, 'window_size must be greater than 0'
        self.window_resolution = window_resolution
        
        self.attn = CascadedGroupAttention(dim, key_dim, num_heads,
                                attn_ratio=attn_ratio, 
                                resolution=window_resolution,
                                kernels=kernels,)
    def forward(self, x):
        B, C, H, W = x.shape
               
        if H <= self.window_resolution and W <= self.window_resolution:
            x = self.attn(x)
        else:
            x = x.permute(0, 2, 3, 1)
            pad_b = (self.window_resolution - H %
                     self.window_resolution) % self.window_resolution
            pad_r = (self.window_resolution - W %
                     self.window_resolution) % self.window_resolution
            padding = pad_b > 0 or pad_r > 0
            if padding:
                x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b))
            pH, pW = H + pad_b, W + pad_r
            nH = pH // self.window_resolution
            nW = pW // self.window_resolution
            # window partition, BHWC -> B(nHh)(nWw)C -> BnHnWhwC -> (BnHnW)hwC -> (BnHnW)Chw
            x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3).reshape(
                B * nH * nW, self.window_resolution, self.window_resolution, C
            ).permute(0, 3, 1, 2)
            x = self.attn(x)
            # window reverse, (BnHnW)Chw -> (BnHnW)hwC -> BnHnWhwC -> B(nHh)(nWw)C -> BHWC
            x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution,
                       C).transpose(2, 3).reshape(B, pH, pW, C)
            if padding:
                x = x[:, :H, :W].contiguous()
            x = x.permute(0, 3, 1, 2)
        return x
class EfficientViTBlock(torch.nn.Module):
    """ A basic EfficientViT building block.
    Args:
        type (str): Type for token mixer. Default: 's' for self-attention.
        ed (int): Number of input channels.
        kd (int): Dimension for query and key in the token mixer.
        nh (int): Number of attention heads.
        ar (int): Multiplier for the query dim for value dimension.
        resolution (int): Input resolution.
        window_resolution (int): Local window resolution.
        kernels (List[int]): The kernel size of the dw conv on query.
    """
    def __init__(self, type,
                 ed, kd, nh=8,
                 ar=4,
                 resolution=14,
                 window_resolution=7,
                 kernels=[5, 5, 5, 5],):
        super().__init__()
            
        self.dw0 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution))
        self.ffn0 = Residual(FFN(ed, int(ed * 2), resolution))
        if type == 's':
            self.mixer = Residual(LocalWindowAttention(ed, kd, nh, attn_ratio=ar, \
                    resolution=resolution, window_resolution=window_resolution, kernels=kernels))
                
        self.dw1 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution))
        self.ffn1 = Residual(FFN(ed, int(ed * 2), resolution))
    def forward(self, x):
        return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x)))))
class EfficientViT(torch.nn.Module):
    def __init__(self, img_size=400,
                 patch_size=16,
                 frozen_stages=0,
                 in_chans=3,
                 stages=['s', 's', 's'],
                 embed_dim=[64, 128, 192],
                 key_dim=[16, 16, 16],
                 depth=[1, 2, 3],
                 num_heads=[4, 4, 4],
                 window_size=[7, 7, 7],
                 kernels=[5, 5, 5, 5],
                 down_ops=[['subsample', 2], ['subsample', 2], ['']],
                 pretrained=None,
                 distillation=False,):
        super().__init__()
        resolution = img_size
        self.patch_embed = torch.nn.Sequential(Conv2d_BN(in_chans, embed_dim[0] // 8, 3, 2, 1, resolution=resolution), torch.nn.ReLU(),
                           Conv2d_BN(embed_dim[0] // 8, embed_dim[0] // 4, 3, 2, 1, resolution=resolution // 2), torch.nn.ReLU(),
                           Conv2d_BN(embed_dim[0] // 4, embed_dim[0] // 2, 3, 2, 1, resolution=resolution // 4), torch.nn.ReLU(),
                           Conv2d_BN(embed_dim[0] // 2, embed_dim[0], 3, 1, 1, resolution=resolution // 8))
        resolution = img_size // patch_size
        attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))]
        self.blocks1 = []
        self.blocks2 = []
        self.blocks3 = []
        for i, (stg, ed, kd, dpth, nh, ar, wd, do) in enumerate(
                zip(stages, embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)):
            for d in range(dpth):
                eval('self.blocks' + str(i+1)).append(EfficientViTBlock(stg, ed, kd, nh, ar, resolution, wd, kernels))
            if do[0] == 'subsample':
                #('Subsample' stride)
                blk = eval('self.blocks' + str(i+2))
                resolution_ = (resolution - 1) // do[1] + 1
                blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i], embed_dim[i], 3, 1, 1, groups=embed_dim[i], resolution=resolution)),
                                    Residual(FFN(embed_dim[i], int(embed_dim[i] * 2), resolution)),))
                blk.append(PatchMerging(*embed_dim[i:i + 2], resolution))
                resolution = resolution_
                blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i + 1], embed_dim[i + 1], 3, 1, 1, groups=embed_dim[i + 1], resolution=resolution)),
                                    Residual(FFN(embed_dim[i + 1], int(embed_dim[i + 1] * 2), resolution)),))
        self.blocks1 = torch.nn.Sequential(*self.blocks1)
        self.blocks2 = torch.nn.Sequential(*self.blocks2)
        self.blocks3 = torch.nn.Sequential(*self.blocks3)
        
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def forward(self, x):
        outs = []
        x = self.patch_embed(x)
        x = self.blocks1(x)
        outs.append(x)
        x = self.blocks2(x)
        outs.append(x)
        x = self.blocks3(x)
        outs.append(x)
        return outs
EfficientViT_m0 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [64, 128, 192],
        'depth': [1, 2, 3],
        'num_heads': [4, 4, 4],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }
EfficientViT_m1 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [128, 144, 192],
        'depth': [1, 2, 3],
        'num_heads': [2, 3, 3],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }
EfficientViT_m2 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [128, 192, 224],
        'depth': [1, 2, 3],
        'num_heads': [4, 3, 2],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }
EfficientViT_m3 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [128, 240, 320],
        'depth': [1, 2, 3],
        'num_heads': [4, 3, 4],
        'window_size': [7, 7, 7],
        'kernels': [5, 5, 5, 5],
    }
EfficientViT_m4 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [128, 256, 384],
        'depth': [1, 2, 3],
        'num_heads': [4, 4, 4],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }
EfficientViT_m5 = {
        'img_size': 224,
        'patch_size': 16,
        'embed_dim': [192, 288, 384],
        'depth': [1, 3, 4],
        'num_heads': [3, 3, 4],
        'window_size': [7, 7, 7],
        'kernels': [7, 5, 3, 3],
    }
def EfficientViT_M0(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m0):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model
def EfficientViT_M1(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m1):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model
def EfficientViT_M2(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m2):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model
def EfficientViT_M3(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m3):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model
    
def EfficientViT_M4(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m4):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model
def EfficientViT_M5(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m5):
    model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg)
    if pretrained:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model']))
    if fuse:
        replace_batchnorm(model)
    return model
def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        # k = k[9:]
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

ultralytics/nn/tasks.py中导入刚才的efficientVit模块:

# 主干网络
from ultralytics.nn.backbone.efficientViT import *

【保姆级教程】【YOLOv8替换主干网络】【1】使用efficientViT替换YOLOV8主干网络结构(3)https://developer.aliyun.com/article/1536653

相关文章
|
1月前
|
存储 数据可视化 API
重磅干货,免费三方网络验证[用户系统+CDK]全套API接口分享教程。
本套网络验证系统提供全面的API接口,支持用户注册、登录、数据查询与修改、留言板管理等功能,适用于不想自建用户系统的APP开发者。系统还包含CDK管理功能,如生成、使用、查询和删除CDK等。支持高自定义性,包括20个自定义字段,满足不同需求。详细接口参数及示例请参考官方文档。
|
1月前
|
编解码 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(10-2):保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali——Liinux-Debian:就怕你学成黑客啦!)作者——LJS
保姆级别教会你如何搭建白帽黑客渗透测试系统环境Kali以及常见的报错及对应解决方案、常用Kali功能简便化以及详解如何具体实现
|
2月前
|
弹性计算 Kubernetes 网络协议
阿里云弹性网络接口技术的容器网络基础教程
阿里云弹性网络接口技术的容器网络基础教程
阿里云弹性网络接口技术的容器网络基础教程
|
3月前
|
网络协议 开发者 Python
网络编程小白秒变大咖!Python Socket基础与进阶教程,轻松上手无压力!
在网络技术飞速发展的今天,掌握网络编程已成为开发者的重要技能。本文以Python为工具,带你从Socket编程基础逐步深入至进阶领域。首先介绍Socket的概念及TCP/UDP协议,接着演示如何用Python创建、绑定、监听Socket,实现数据收发;最后通过构建简单的聊天服务器,巩固所学知识。让初学者也能迅速上手,成为网络编程高手。
83 1
|
4月前
|
API
|
4月前
|
SQL 运维 安全
GitHub爆赞的Web安全防护指南,网络安全零基础入门必备教程!
web安全现在占据了企业信息安全的很大一部分比重,每个企业都有对外发布的很多业务系统,如何保障web业务安全也是一项信息安全的重要内容。 然而Web 安全是一个实践性很强的领域,需要通过大量的练习来建立对漏洞的直观认识,并积累解决问题的经验。 Web安全与防护技术是当前安全界关注的热点,今天给小伙伴们分享的这份手册尝试针对各类漏洞的攻防技术进行体系化整理,从漏洞的原理到整体攻防技术演进过程进行详细讲解,从而形成对漏洞和web安全的体系化的认识。
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
【Macos系统】安装VOSviewer及使用VOSviewer教程!!以ESN网络的研究进行案例分析
本文介绍了如何在MacOS系统上安装VOSviewer软件,并以ESN(Echo State Network)网络的研究为例,通过VOSviewer对相关科学文献进行可视化分析,以深入了解ESN在学术研究中的应用和发展情况。
319 0
【Macos系统】安装VOSviewer及使用VOSviewer教程!!以ESN网络的研究进行案例分析
|
4月前
|
SQL 运维 安全
GitHub爆赞的Web安全防护指南,网络安全零基础入门必备教程!
web安全现在占据了企业信息安全的很大一部分比重,每个企业都有对外发布的很多业务系统,如何保障web业务安全也是一项信息安全的重要内容。 然而Web 安全是一个实践性很强的领域,需要通过大量的练习来建立对漏洞的直观认识,并积累解决问题的经验。 Web安全与防护技术是当前安全界关注的热点,今天给小伙伴们分享的这份手册尝试针对各类漏洞的攻防技术进行体系化整理,从漏洞的原理到整体攻防技术演进过程进行详细讲解,从而形成对漏洞和web安全的体系化的认识。
|
6天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
42 17
|
16天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
下一篇
DataWorks