【保姆级教程】【YOLOv8替换主干网络】【1】使用efficientViT替换YOLOV8主干网络结构(1)https://developer.aliyun.com/article/1536649
第1步–添加efficientVit.py文件,并导入
在ultralytics/nn/backbone
目录下,新建backbone网络文件efficientVit.py
,内容如下:
import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint import itertools from timm.models.layers import SqueezeExcite import numpy as np import itertools __all__ = ['EfficientViT_M0', 'EfficientViT_M1', 'EfficientViT_M2', 'EfficientViT_M3', 'EfficientViT_M4', 'EfficientViT_M5'] class Conv2d_BN(torch.nn.Sequential): def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1, groups=1, bn_weight_init=1, resolution=-10000): super().__init__() self.add_module('c', torch.nn.Conv2d( a, b, ks, stride, pad, dilation, groups, bias=False)) self.add_module('bn', torch.nn.BatchNorm2d(b)) torch.nn.init.constant_(self.bn.weight, bn_weight_init) torch.nn.init.constant_(self.bn.bias, 0) @torch.no_grad() def switch_to_deploy(self): c, bn = self._modules.values() w = bn.weight / (bn.running_var + bn.eps)**0.5 w = c.weight * w[:, None, None, None] b = bn.bias - bn.running_mean * bn.weight / \ (bn.running_var + bn.eps)**0.5 m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size( 0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups) m.weight.data.copy_(w) m.bias.data.copy_(b) return m def replace_batchnorm(net): for child_name, child in net.named_children(): if hasattr(child, 'fuse'): setattr(net, child_name, child.fuse()) elif isinstance(child, torch.nn.BatchNorm2d): setattr(net, child_name, torch.nn.Identity()) else: replace_batchnorm(child) class PatchMerging(torch.nn.Module): def __init__(self, dim, out_dim, input_resolution): super().__init__() hid_dim = int(dim * 4) self.conv1 = Conv2d_BN(dim, hid_dim, 1, 1, 0, resolution=input_resolution) self.act = torch.nn.ReLU() self.conv2 = Conv2d_BN(hid_dim, hid_dim, 3, 2, 1, groups=hid_dim, resolution=input_resolution) self.se = SqueezeExcite(hid_dim, .25) self.conv3 = Conv2d_BN(hid_dim, out_dim, 1, 1, 0, resolution=input_resolution // 2) def forward(self, x): x = self.conv3(self.se(self.act(self.conv2(self.act(self.conv1(x)))))) return x class Residual(torch.nn.Module): def __init__(self, m, drop=0.): super().__init__() self.m = m self.drop = drop def forward(self, x): if self.training and self.drop > 0: return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1, device=x.device).ge_(self.drop).div(1 - self.drop).detach() else: return x + self.m(x) class FFN(torch.nn.Module): def __init__(self, ed, h, resolution): super().__init__() self.pw1 = Conv2d_BN(ed, h, resolution=resolution) self.act = torch.nn.ReLU() self.pw2 = Conv2d_BN(h, ed, bn_weight_init=0, resolution=resolution) def forward(self, x): x = self.pw2(self.act(self.pw1(x))) return x class CascadedGroupAttention(torch.nn.Module): r""" Cascaded Group Attention. Args: dim (int): Number of input channels. key_dim (int): The dimension for query and key. num_heads (int): Number of attention heads. attn_ratio (int): Multiplier for the query dim for value dimension. resolution (int): Input resolution, correspond to the window size. kernels (List[int]): The kernel size of the dw conv on query. """ def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=14, kernels=[5, 5, 5, 5],): super().__init__() self.num_heads = num_heads self.scale = key_dim ** -0.5 self.key_dim = key_dim self.d = int(attn_ratio * key_dim) self.attn_ratio = attn_ratio qkvs = [] dws = [] for i in range(num_heads): qkvs.append(Conv2d_BN(dim // (num_heads), self.key_dim * 2 + self.d, resolution=resolution)) dws.append(Conv2d_BN(self.key_dim, self.key_dim, kernels[i], 1, kernels[i]//2, groups=self.key_dim, resolution=resolution)) self.qkvs = torch.nn.ModuleList(qkvs) self.dws = torch.nn.ModuleList(dws) self.proj = torch.nn.Sequential(torch.nn.ReLU(), Conv2d_BN( self.d * num_heads, dim, bn_weight_init=0, resolution=resolution)) points = list(itertools.product(range(resolution), range(resolution))) N = len(points) attention_offsets = {} idxs = [] for p1 in points: for p2 in points: offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1])) if offset not in attention_offsets: attention_offsets[offset] = len(attention_offsets) idxs.append(attention_offsets[offset]) self.attention_biases = torch.nn.Parameter( torch.zeros(num_heads, len(attention_offsets))) self.register_buffer('attention_bias_idxs', torch.LongTensor(idxs).view(N, N)) @torch.no_grad() def train(self, mode=True): super().train(mode) if mode and hasattr(self, 'ab'): del self.ab else: self.ab = self.attention_biases[:, self.attention_bias_idxs] def forward(self, x): # x (B,C,H,W) B, C, H, W = x.shape trainingab = self.attention_biases[:, self.attention_bias_idxs] feats_in = x.chunk(len(self.qkvs), dim=1) feats_out = [] feat = feats_in[0] for i, qkv in enumerate(self.qkvs): if i > 0: # add the previous output to the input feat = feat + feats_in[i] feat = qkv(feat) q, k, v = feat.view(B, -1, H, W).split([self.key_dim, self.key_dim, self.d], dim=1) # B, C/h, H, W q = self.dws[i](q) q, k, v = q.flatten(2), k.flatten(2), v.flatten(2) # B, C/h, N attn = ( (q.transpose(-2, -1) @ k) * self.scale + (trainingab[i] if self.training else self.ab[i]) ) attn = attn.softmax(dim=-1) # BNN feat = (v @ attn.transpose(-2, -1)).view(B, self.d, H, W) # BCHW feats_out.append(feat) x = self.proj(torch.cat(feats_out, 1)) return x class LocalWindowAttention(torch.nn.Module): r""" Local Window Attention. Args: dim (int): Number of input channels. key_dim (int): The dimension for query and key. num_heads (int): Number of attention heads. attn_ratio (int): Multiplier for the query dim for value dimension. resolution (int): Input resolution. window_resolution (int): Local window resolution. kernels (List[int]): The kernel size of the dw conv on query. """ def __init__(self, dim, key_dim, num_heads=8, attn_ratio=4, resolution=14, window_resolution=7, kernels=[5, 5, 5, 5],): super().__init__() self.dim = dim self.num_heads = num_heads self.resolution = resolution assert window_resolution > 0, 'window_size must be greater than 0' self.window_resolution = window_resolution self.attn = CascadedGroupAttention(dim, key_dim, num_heads, attn_ratio=attn_ratio, resolution=window_resolution, kernels=kernels,) def forward(self, x): B, C, H, W = x.shape if H <= self.window_resolution and W <= self.window_resolution: x = self.attn(x) else: x = x.permute(0, 2, 3, 1) pad_b = (self.window_resolution - H % self.window_resolution) % self.window_resolution pad_r = (self.window_resolution - W % self.window_resolution) % self.window_resolution padding = pad_b > 0 or pad_r > 0 if padding: x = torch.nn.functional.pad(x, (0, 0, 0, pad_r, 0, pad_b)) pH, pW = H + pad_b, W + pad_r nH = pH // self.window_resolution nW = pW // self.window_resolution # window partition, BHWC -> B(nHh)(nWw)C -> BnHnWhwC -> (BnHnW)hwC -> (BnHnW)Chw x = x.view(B, nH, self.window_resolution, nW, self.window_resolution, C).transpose(2, 3).reshape( B * nH * nW, self.window_resolution, self.window_resolution, C ).permute(0, 3, 1, 2) x = self.attn(x) # window reverse, (BnHnW)Chw -> (BnHnW)hwC -> BnHnWhwC -> B(nHh)(nWw)C -> BHWC x = x.permute(0, 2, 3, 1).view(B, nH, nW, self.window_resolution, self.window_resolution, C).transpose(2, 3).reshape(B, pH, pW, C) if padding: x = x[:, :H, :W].contiguous() x = x.permute(0, 3, 1, 2) return x class EfficientViTBlock(torch.nn.Module): """ A basic EfficientViT building block. Args: type (str): Type for token mixer. Default: 's' for self-attention. ed (int): Number of input channels. kd (int): Dimension for query and key in the token mixer. nh (int): Number of attention heads. ar (int): Multiplier for the query dim for value dimension. resolution (int): Input resolution. window_resolution (int): Local window resolution. kernels (List[int]): The kernel size of the dw conv on query. """ def __init__(self, type, ed, kd, nh=8, ar=4, resolution=14, window_resolution=7, kernels=[5, 5, 5, 5],): super().__init__() self.dw0 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution)) self.ffn0 = Residual(FFN(ed, int(ed * 2), resolution)) if type == 's': self.mixer = Residual(LocalWindowAttention(ed, kd, nh, attn_ratio=ar, \ resolution=resolution, window_resolution=window_resolution, kernels=kernels)) self.dw1 = Residual(Conv2d_BN(ed, ed, 3, 1, 1, groups=ed, bn_weight_init=0., resolution=resolution)) self.ffn1 = Residual(FFN(ed, int(ed * 2), resolution)) def forward(self, x): return self.ffn1(self.dw1(self.mixer(self.ffn0(self.dw0(x))))) class EfficientViT(torch.nn.Module): def __init__(self, img_size=400, patch_size=16, frozen_stages=0, in_chans=3, stages=['s', 's', 's'], embed_dim=[64, 128, 192], key_dim=[16, 16, 16], depth=[1, 2, 3], num_heads=[4, 4, 4], window_size=[7, 7, 7], kernels=[5, 5, 5, 5], down_ops=[['subsample', 2], ['subsample', 2], ['']], pretrained=None, distillation=False,): super().__init__() resolution = img_size self.patch_embed = torch.nn.Sequential(Conv2d_BN(in_chans, embed_dim[0] // 8, 3, 2, 1, resolution=resolution), torch.nn.ReLU(), Conv2d_BN(embed_dim[0] // 8, embed_dim[0] // 4, 3, 2, 1, resolution=resolution // 2), torch.nn.ReLU(), Conv2d_BN(embed_dim[0] // 4, embed_dim[0] // 2, 3, 2, 1, resolution=resolution // 4), torch.nn.ReLU(), Conv2d_BN(embed_dim[0] // 2, embed_dim[0], 3, 1, 1, resolution=resolution // 8)) resolution = img_size // patch_size attn_ratio = [embed_dim[i] / (key_dim[i] * num_heads[i]) for i in range(len(embed_dim))] self.blocks1 = [] self.blocks2 = [] self.blocks3 = [] for i, (stg, ed, kd, dpth, nh, ar, wd, do) in enumerate( zip(stages, embed_dim, key_dim, depth, num_heads, attn_ratio, window_size, down_ops)): for d in range(dpth): eval('self.blocks' + str(i+1)).append(EfficientViTBlock(stg, ed, kd, nh, ar, resolution, wd, kernels)) if do[0] == 'subsample': #('Subsample' stride) blk = eval('self.blocks' + str(i+2)) resolution_ = (resolution - 1) // do[1] + 1 blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i], embed_dim[i], 3, 1, 1, groups=embed_dim[i], resolution=resolution)), Residual(FFN(embed_dim[i], int(embed_dim[i] * 2), resolution)),)) blk.append(PatchMerging(*embed_dim[i:i + 2], resolution)) resolution = resolution_ blk.append(torch.nn.Sequential(Residual(Conv2d_BN(embed_dim[i + 1], embed_dim[i + 1], 3, 1, 1, groups=embed_dim[i + 1], resolution=resolution)), Residual(FFN(embed_dim[i + 1], int(embed_dim[i + 1] * 2), resolution)),)) self.blocks1 = torch.nn.Sequential(*self.blocks1) self.blocks2 = torch.nn.Sequential(*self.blocks2) self.blocks3 = torch.nn.Sequential(*self.blocks3) self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))] def forward(self, x): outs = [] x = self.patch_embed(x) x = self.blocks1(x) outs.append(x) x = self.blocks2(x) outs.append(x) x = self.blocks3(x) outs.append(x) return outs EfficientViT_m0 = { 'img_size': 224, 'patch_size': 16, 'embed_dim': [64, 128, 192], 'depth': [1, 2, 3], 'num_heads': [4, 4, 4], 'window_size': [7, 7, 7], 'kernels': [7, 5, 3, 3], } EfficientViT_m1 = { 'img_size': 224, 'patch_size': 16, 'embed_dim': [128, 144, 192], 'depth': [1, 2, 3], 'num_heads': [2, 3, 3], 'window_size': [7, 7, 7], 'kernels': [7, 5, 3, 3], } EfficientViT_m2 = { 'img_size': 224, 'patch_size': 16, 'embed_dim': [128, 192, 224], 'depth': [1, 2, 3], 'num_heads': [4, 3, 2], 'window_size': [7, 7, 7], 'kernels': [7, 5, 3, 3], } EfficientViT_m3 = { 'img_size': 224, 'patch_size': 16, 'embed_dim': [128, 240, 320], 'depth': [1, 2, 3], 'num_heads': [4, 3, 4], 'window_size': [7, 7, 7], 'kernels': [5, 5, 5, 5], } EfficientViT_m4 = { 'img_size': 224, 'patch_size': 16, 'embed_dim': [128, 256, 384], 'depth': [1, 2, 3], 'num_heads': [4, 4, 4], 'window_size': [7, 7, 7], 'kernels': [7, 5, 3, 3], } EfficientViT_m5 = { 'img_size': 224, 'patch_size': 16, 'embed_dim': [192, 288, 384], 'depth': [1, 3, 4], 'num_heads': [3, 3, 4], 'window_size': [7, 7, 7], 'kernels': [7, 5, 3, 3], } def EfficientViT_M0(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m0): model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg) if pretrained: model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model'])) if fuse: replace_batchnorm(model) return model def EfficientViT_M1(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m1): model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg) if pretrained: model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model'])) if fuse: replace_batchnorm(model) return model def EfficientViT_M2(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m2): model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg) if pretrained: model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model'])) if fuse: replace_batchnorm(model) return model def EfficientViT_M3(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m3): model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg) if pretrained: model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model'])) if fuse: replace_batchnorm(model) return model def EfficientViT_M4(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m4): model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg) if pretrained: model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model'])) if fuse: replace_batchnorm(model) return model def EfficientViT_M5(pretrained='', frozen_stages=0, distillation=False, fuse=False, pretrained_cfg=None, model_cfg=EfficientViT_m5): model = EfficientViT(frozen_stages=frozen_stages, distillation=distillation, pretrained=pretrained, **model_cfg) if pretrained: model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)['model'])) if fuse: replace_batchnorm(model) return model def update_weight(model_dict, weight_dict): idx, temp_dict = 0, {} for k, v in weight_dict.items(): # k = k[9:] if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v): temp_dict[k] = v idx += 1 model_dict.update(temp_dict) print(f'loading weights... {idx}/{len(model_dict)} items') return model_dict
在ultralytics/nn/tasks.py
中导入刚才的efficientVit
模块:
# 主干网络 from ultralytics.nn.backbone.efficientViT import *
【保姆级教程】【YOLOv8替换主干网络】【1】使用efficientViT替换YOLOV8主干网络结构(3)https://developer.aliyun.com/article/1536653