【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总(3)

简介: 【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总

【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总(2)https://developer.aliyun.com/article/1536619

不同路径1  

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp = [[0 for i in range(n)] for _ in range(m)]
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        for i in range(1,m):
            for j in range(1,n):
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[-1][-1]

不同路径2    

class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m = len(obstacleGrid)
        n = len(obstacleGrid[0])
        zero_loc = {(i,j) for i in range(m) for j in range(n) if obstacleGrid[i][j] == 1}
        dp = [[0] * n for i in range(m)]
        for i in range(m):
            # 初始化第一列,只要碰到一个1,那么后边都无法走到
            if obstacleGrid[i][0] == 1:
                break
            dp[i][0] = 1
        for j in range(n):
            #初始化第一行,只要碰到一个1,那么后边都无法走到
            if obstacleGrid[0][j] == 1:
                break
            dp[0][j] = 1
        for i in range(1,m):
            for j in range(1,n):
                if (i,j) in zero_loc:        
                    dp[i][j] = 0
                else:
                    dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[-1][-1]
                  
class Solution:
    def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
        m = len(obstacleGrid)
        n =len(obstacleGrid[0])
        if obstacleGrid[0][0] == 1 or obstacleGrid[-1][-1] == 1:
            return 0
        dp = [[0] * n for _ in range(m)]
        for i in range(m):
            if obstacleGrid[i][0] == 0:
                dp[i][0] = 1
            else:
                break
        for j in range(n):
            if obstacleGrid[0][j] == 0:
                dp[0][j] = 1
            else:
                break
        for i in range(1,m):
            for j in range(1,n):        
                if obstacleGrid[i][j] == 1:
                    dp[i][j] = 0
                    continue
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[-1][-1]

         

不同路径3(回溯)  

class Solution:
    def uniquePathsIII(self, grid: List[List[int]]) -> int:
        # 注意每一个无障碍的格子都需要通过一次
        start_x = 0        
        start_y = 0
        steps = 1
        m = len(grid)
        n = len(grid[0])
        # 遍历获取起始位置和统计总步数
        for i in range(m):
            for j in range(n):
                if grid[i][j] == 1:
                    start_x = i
                    start_y = j
                    continue
                if grid[i][j] == 0:
                    steps += 1
        def DFS(x,y,cur_step, grid):
            # 排除越界的情况和遇到障碍的情况
            if x < 0 or x >= m or y < 0 or y >= n or grid[x][y] == -1:
                return 0
            if grid[x][y] == 2:
                # 走到2的位置,且步数为0,表示经过了所有的无障碍格子,是一种方案
                return 1 if cur_step == 0 else 0
            grid[x][y] = -1 # 将已经走过的标记为障碍
            res = DFS(x - 1, y, cur_step - 1, grid) + DFS(x + 1, y, cur_step - 1, grid) \
                   + DFS(x, y - 1, cur_step - 1, grid) \
                   + DFS(x, y + 1, cur_step - 1, grid)
            # 回溯
            grid[x][y] = 0
            return res
        return DFS(start_x,start_y,steps,grid)

             

零钱兑换1  

class Solution:
    def coinChange(self, coins: List[int], amount: int) -> int:
        #dp[i] = x 表示金额i最少需要x个金币
        dp = [amount + 1 for i in range(amount + 1)]
        dp[0] = 0
        for i in range(amount+1):
            for coin in coins:
                if i - coin < 0:
                    continue
                dp[i] = min(dp[i],dp[i-coin] + 1)
        if dp[amount] == amount + 1:
            return -1
        else:
            return dp[amount]

             

零钱兑换2  

class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        # 子问题:对于硬币从0到k,我们必须使用第k个硬币的时候,当前金额的组合数
        # 状态数组DP[i]表示对于第k个硬币能凑的组合数
        # 转移方程DP[i] = DP[i] + DP[i-k]
        dp = [0] * (amount + 1)
        dp[0] = 1
        for coin in coins:
            for x in range(coin, amount + 1):
                dp[x] += dp[x - coin]
        return dp[amount]

最大正方形    

class Solution:
    def maximalSquare(self, matrix: List[List[str]]) -> int:
        # 用 dp(i, j) 表示以 (i, j)为右下角,且只包含 1的正方形的边长最大值
        if len(matrix) == 0 or len(matrix[0]) == 0:
            return 0
        maxSide = 0
        rows, columns = len(matrix), len(matrix[0])
        dp = [[0] * columns for _ in range(rows)]
        for i in range(rows):
            for j in range(columns):
                if matrix[i][j] == '1':
                    if i == 0 or j == 0:
                        dp[i][j] = 1
                    else:
                        dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1
                    maxSide = max(maxSide, dp[i][j])
        maxSquare = maxSide * maxSide
        return maxSquare

             

最大矩形  

class Solution:
    def maximalRectangle(self, matrix: List[List[str]]) -> int:
        #时间复杂度 : O(NM)。每次对于N的迭代我们会对M迭代常数次
        if not matrix: return 0
        m = len(matrix)
        n = len(matrix[0])
                  
        left = [0] * n # initialize left as the leftmost boundary possible
        right = [n] * n # initialize right as the rightmost boundary possible
        height = [0] * n
        maxarea = 0
        for i in range(m):
            cur_left, cur_right = 0, n
            # update height
            for j in range(n):
                if matrix[i][j] == '1': height[j] += 1
                else: height[j] = 0
            # update left        
            for j in range(n):
                if matrix[i][j] == '1': left[j] = max(left[j], cur_left)
                else:
                    left[j] = 0
                    cur_left = j + 1
            # update right
            for j in range(n-1, -1, -1):
                if matrix[i][j] == '1': right[j] = min(right[j], cur_right)
                else:
                    right[j] = n
                    cur_right = j
            # update the area
            for j in range(n):
                maxarea = max(maxarea, height[j] * (right[j] - left[j]))
                  
        return maxarea

         

         

最大子序和  

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        # dp[i] 表示以小标i为结尾的最大连续子序列的和dp[j] = max(nums[j],dp[j-1] + nums[j])
        if len(nums) == 0:
            return 0
        if len(nums) == 1:
            return nums[0]
        n = len(nums)        
        dp = [float('-inf')] * n
        dp[0] = nums[0]
        for j in range(1,n):
            dp[j] = max(nums[j],dp[j-1] + nums[j])
        return max(dp)

三角形最小路径和  

#法一
class Solution:
    def minimumTotal(self, triangle: List[List[int]]) -> int:
        n = len(triangle)
        f = [[0] * n for _ in range(n)]
        f[0][0] = triangle[0][0]
                  
        for i in range(1, n):        
            f[i][0] = f[i - 1][0] + triangle[i][0]
            for j in range(1, i):
                f[i][j] = min(f[i - 1][j - 1], f[i - 1][j]) + triangle[i][j]
            f[i][i] = f[i - 1][i - 1] + triangle[i][i]     
        return min(f[n - 1])
                  
#法二
class Solution:
    def minimumTotal(self, triangle: List[List[int]]) -> int:
        n = len(triangle)
        f = [0] * n
        f[0] = triangle[0][0]
                  
        for i in range(1, n):
            f[i] = f[i - 1] + triangle[i][i]
            for j in range(i - 1, 0, -1):
                f[j] = min(f[j - 1], f[j]) + triangle[i][j]
            f[0] += triangle[i][0]
        return min(f)

【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总(4)   https://developer.aliyun.com/article/1536622

相关文章
【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总(2)
【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总
【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总(4)
【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总
|
7月前
|
存储 算法
【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总(1)
【42页动态规划学习笔记分享】动态规划核心原理详解及27道LeetCode相关经典题目汇总
|
7月前
|
算法
【经典LeetCode算法题目专栏分类】【第7期】快慢指针与链表
【经典LeetCode算法题目专栏分类】【第7期】快慢指针与链表
|
7月前
|
算法
【经典LeetCode算法题目专栏分类】【第2期】组合与排列问题系列
【经典LeetCode算法题目专栏分类】【第2期】组合与排列问题系列
|
7月前
|
存储 算法
数据结构学习记录——图应用实例-六度空间(题目描述、算法思路、伪代码及解读、图解)
数据结构学习记录——图应用实例-六度空间(题目描述、算法思路、伪代码及解读、图解)
77 0
利用动态规划转移做数据结构入门题目
利用动态规划转移做数据结构入门题目
|
8月前
|
存储 并行计算 算法
C++动态规划的全面解析:从原理到实践
C++动态规划的全面解析:从原理到实践
230 0
|
存储 算法 Android开发
【算法基础】拓扑排序及实战
在图论中,如果一个有向图从任意顶点出发无法经过若干条边回到该点,则这个图是一个**有向无环图(DAG,Directed Acyclic Graph)**
|
决策智能 索引 Python
动态规划原理及案例介绍
更多文章可关注我的微信公众号:python学习杂记
282 0