【数据结构】布隆过滤器原理详解及其代码实现

简介: 【数据结构】布隆过滤器原理详解及其代码实现

布隆过滤器(Bloom Filter是一个占用空间很小、效率很高的随机数据结构,它由一个bit数组和一组Hash算法构成。可用于判断一个元素是否在一个集合中,查询效率很高(1-N,最优能逼近于1)。

在很多场景下,我们都需要一个能迅速判断一个元素是否在一个集合中。譬如:

网页爬虫对URL的去重,避免爬取相同的URL地址;

反垃圾邮件,从数十亿个垃圾邮件列表中判断某邮箱是否垃圾邮箱(同理,垃圾短信);

缓存击穿,将已存在的缓存放到布隆中,当黑客访问不存在的缓存时迅速返回避免缓存及DB挂掉。

可能有人会问,我们直接把这些数据都放到数据库或者redis之类的缓存中不就行了,查询时直接匹配不就OK了?

是的,当这个集合量比较小,你内存又够大时,是可以这样做,你可以直接弄个HashSet、HashMap就OK了。但是当这个量以数十亿计,内存装不下,数据库检索极慢时该怎么办。

以垃圾邮箱为例

方案比较

1.将所有垃圾邮箱地址存到数据库,匹配时遍历

2.用HashSet存储所有地址,匹配时接近O(1)的效率查出来

3.将地址用MD5算法或其他单向映射算法计算后存入HashSet,无论地址多大,保存的只有MD5后的固定位数

4.布隆过滤器,将所有地址经过多个Hash算法,映射到一个bit数组怎么判断一个外来的元素是否已经在集合里呢如果映射的元素的中包含0,则该元素一定不在集合里,如果该元素映射的都为1,那么该元素可能在数组里。

优缺点

方案1和2都是保存完整的地址,占用空间大。一个地址16字节,10亿即可达到上百G的内存。HashSet效率逼近O(1),数据库就不谈效率了,不在一个数量级。

方案3保存部分信息,占用空间小于存储完整信息,存在冲突的可能(非垃圾邮箱可能MD5后和某垃圾邮箱一样,概率低)

方案4将所有地址经过Hash后映射到 同一个bit数组,看清了,只有一个超大的bit数组,保存所有的映射,占用空间极小,冲突概率高。

大家知道,java中的HashMap有个扩容参数默认是0.75,也就是你想存75个数,至少需要一个100的数组,而且还会有不少的冲突。实际上,Hash的存储效率是0.5左右,存5个数需要10个的空间。算起来占用空间还是挺大的。

而布隆过滤器就不用为每个数都分配空间了,而是直接把所有的数通过算法映射到同一个数组,带来的问题就是冲突上升,只要概率在可以接受的范围,用时间换空间,在很多时候是好方案。布隆过滤器需要的空间仅为HashMap的1/8-1/4之间,而且它不会漏掉任何一个在黑名单的可疑对象,问题只是会误伤一些非黑名单对象。

原理

经过K个哈希算法将每个算法将元素映射到数组中的位置标1;

初始化状态是一个全为0的bit数组

 

为了表达存储N个元素的集合,使用K个独立的函数来进行哈希运算。x1,x2……xk为k个哈希算法

如果集合元素有N1,N2……NN,N1经过x1运算后得到的结果映射的位置标1,经过x2运算后结果映射也标1,已经为1的1保持不变。经过k次散列后,对N1的散列完成。

依次对N2,NN等所有数据进行散列,最终得到一个部分为1,部分位为0的字节数组。当然了,这个字节数组会比较长,不然散列效果不好。

那么怎么判断一个外来的元素是否已经在集合里呢,譬如已经散列了10亿个垃圾邮箱,现在来了一个邮箱,怎么判断它是否在这10亿里面呢?

很简单,就拿这个新来的也依次经历x1,x2……xk个哈希算法即可。

在任何一个哈希算法譬如到x2时,得到的映射值有0,那就说明这个邮箱肯定不在这10亿内。

如果是一个黑名单对象,那么可以肯定的是所有映射都为1,肯定跑不了它。也就是说是坏人,一定会被抓。

那么误伤是为什么呢,就是指一些非黑名单对象的值经过k次哈希后,也全部为1,但它确实不是黑名单里的值,这种概率是存在的,但是是可控的。

什么情况下需要布隆过滤器?

先来看几个比较常见的例子

  • 字处理软件中,需要检查一个英语单词是否拼写正确
  • 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上
  • 在网络爬虫里,一个网址是否被访问过
  • yahoo, gmail等邮箱垃圾邮件过滤功能

这几个例子有一个共同的特点: 如何判断一个元素是否存在一个集合中?

常规思路

  • 数组
  • 链表
  • 树、平衡二叉树、Trie
  • Map (红黑树)
  • 哈希表

虽然上面描述的这几种数据结构配合常见的排序、二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求。但是当集合里面的元素数量足够大,如果有500万条记录甚至1亿条记录呢?这个时候常规的数据结构的问题就凸显出来了。数组、链表、树等数据结构会存储元素的内容,一旦数据量过大,消耗的内存也会呈现线性增长,最终达到瓶颈。有的同学可能会问,哈希表不是效率很高吗?查询效率可以达到O(1)。但是哈希表需要消耗的内存依然很高。使用哈希表存储一亿 个垃圾 email 地址的消耗?哈希表的做法:首先,哈希函数将一个email地址映射成8字节信息指纹;考虑到哈希表存储效率通常小于50%(哈希冲突);因此消耗的内存:8 * 2 * 1亿 字节 = 1.6G 内存,普通计算机是无法提供如此大的内存。这个时候,布隆过滤器(Bloom Filter)就应运而生。在继续介绍布隆过滤器的原理时,先讲解下关于哈希函数的预备知识。

哈希函数

哈希函数的概念是:将任意大小的数据转换成特定大小的数据的函数,转换后的数据称为哈希值或哈希编码。下面是一幅示意图:

可以明显的看到,原始数据经过哈希函数的映射后称为了一个个的哈希编码,数据得到压缩。哈希函数是实现哈希表和布隆过滤器的基础。

布隆过滤器介绍

  • 巴顿.布隆于一九七零年提出
  • 一个很长的二进制向量 (位数组)
  • 一系列随机函数 (哈希)
  • 空间效率和查询效率高
  • 有一定的误判率(哈希表是精确匹配)

布隆过滤器原理

布隆过滤器(Bloom Filter)的核心实现是一个超大的位数组和几个哈希函数。假设位数组的长度为m,哈希函数的个数为k

以上图为例,具体的操作流程:假设集合里面有3个元素{x, y, z},哈希函数的个数为3。首先将位数组进行初始化,将里面每个位都设置位0。对于集合里面的每一个元素,将元素依次通过3个哈希函数进行映射,每次映射都会产生一个哈希值,这个值对应位数组上面的一个点,然后将位数组对应的位置标记为1。查询W元素是否存在集合中的时候,同样的方法将W通过哈希映射到位数组上的3个点。如果3个点的其中有一个点不为1,则可以判断该元素一定不存在集合中。反之,如果3个点都为1,则该元素可能存在集合中。注意:此处不能判断该元素是否一定存在集合中,可能存在一定的误判率。可以从图中可以看到:假设某个元素通过映射对应下标为4,5,6这3个点。虽然这3个点都为1,但是很明显这3个点是不同元素经过哈希得到的位置,因此这种情况说明元素虽然不在集合中,也可能对应的都是1,这是误判率存在的原因。

布隆过滤器添加元素

  • 将要添加的元素给k个哈希函数
  • 得到对应于位数组上的k个位置
  • 将这k个位置设为1

布隆过滤器查询元素

  • 将要查询的元素给k个哈希函数
  • 得到对应于位数组上的k个位置
  • 如果k个位置有一个为0,则肯定不在集合中
  • 如果k个位置全部为1,则可能在集合中

布隆过滤器实现

import mmh3
from bitarray import bitarray
# zhihu_crawler.bloom_filter
# Implement a simple bloom filter with murmurhash algorithm.
# Bloom filter is used to check wether an element exists in a collection, and it has a good performance in big data situation.
# It may has positive rate depend on hash functions and elements count.
BIT_SIZE = 5000000
class BloomFilter:
    
    def __init__(self):
        # Initialize bloom filter, set size and all bits to 0
        bit_array = bitarray(BIT_SIZE)
        bit_array.setall(0)
        self.bit_array = bit_array
        
    def add(self, url):
        # Add a url, and set points in bitarray to 1 (Points count is equal to hash funcs count.)
        # Here use 7 hash functions.
        point_list = self.get_postions(url)
        for b in point_list:
            self.bit_array[b] = 1
    def contains(self, url):
        # Check if a url is in a collection
        point_list = self.get_postions(url)
        result = True
        for b in point_list:
            result = result and self.bit_array[b]
    
        return result
    def get_postions(self, url):
        # Get points positions in bit vector.
        point1 = mmh3.hash(url, 41) % BIT_SIZE
        point2 = mmh3.hash(url, 42) % BIT_SIZE
        point3 = mmh3.hash(url, 43) % BIT_SIZE
        point4 = mmh3.hash(url, 44) % BIT_SIZE
        point5 = mmh3.hash(url, 45) % BIT_SIZE
        point6 = mmh3.hash(url, 46) % BIT_SIZE
        point7 = mmh3.hash(url, 47) % BIT_SIZE
        return [point1, point2, point3, point4, point5, point6, point7]


相关文章
|
2月前
|
算法 开发者 计算机视觉
燃爆全场!Python并查集:数据结构界的网红,让你的代码炫酷无比!
在编程的世界里,总有一些数据结构以其独特的魅力和高效的性能脱颖而出,成为众多开发者追捧的“网红”。今天,我们要介绍的这位明星,就是Python中的并查集(Union-Find)——它不仅在解决特定问题上大放异彩,更以其优雅的设计和强大的功能,让你的代码炫酷无比,燃爆全场!
40 0
|
25天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
56 1
|
2月前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
33 1
|
2月前
|
存储 算法 索引
HashMap底层数据结构及其增put删remove查get方法的代码实现原理
HashMap 是基于数组 + 链表 + 红黑树实现的高效键值对存储结构。默认初始容量为16,负载因子为0.75。当存储元素超过容量 * 负载因子时,会进行扩容。HashMap 使用哈希算法计算键的索引位置,通过链表或红黑树解决哈希冲突,确保高效存取。插入、获取和删除操作的时间复杂度接近 O(1)。
32 0
|
2月前
|
Java C++
【数据结构】探索红黑树的奥秘:自平衡原理图解及与二叉查找树的比较
本文深入解析红黑树的自平衡原理,介绍其五大原则,并通过图解和代码示例展示其内部机制。同时,对比红黑树与二叉查找树的性能差异,帮助读者更好地理解这两种数据结构的特点和应用场景。
40 0
|
2月前
05(数据结构考研)树相关操作代码
05(数据结构考研)树相关操作代码
31 0
|
2月前
|
算法
04(数据结构考研)串相关操作代码
04(数据结构考研)串相关操作代码
21 0
|
2月前
03(数据结构考研)队列相关操作代码
03(数据结构考研)队列相关操作代码
43 0
|
2月前
02(数据结构考研)栈相关操作代码
02(数据结构考研)栈相关操作代码
14 0
|
2月前
01(数据结构考研)线性表相关操作代码
01(数据结构考研)线性表相关操作代码
87 0