前言
人脸口罩面部检测
在疫情背景下具有重要的实用价值。该系统通过使用YOLOv8深度学习模型,能够准确地检测人脸是否佩戴口罩,对于控制疫情传播、保障公共卫生安全起到关键作用。
首先,人脸面部口罩检测系统可以应用于公共场所的安全监控。例如,可以在机场、车站、商场、学校等人员密集场所的入口处设置相应的监测设施,在人员进入时进行自动识别和检测,及时发现未佩戴口罩的人员,并进行相应的提醒和防控处理,从而实现对违规者的即时识别和管理。
其次,该系统也可用于企事业单位和小区等封闭场所的门禁系统。通过人脸面部口罩检测,可以判断佩戴者的身份和是否佩戴口罩,在关键区域进行门禁管控,提高安全防护等级,有效避免外部风险因素的侵入。
此外,人脸面部口罩系统还可在医疗机构、工厂、餐饮行业等行业中得到广泛应用。系统能够对员工和访客进行检测,确保工作场所的安全性和卫生标准的合规性。特别是在餐饮行业中,可以用于检测员工是否佩戴口罩,提供安全卫生的就餐环境,维护顾客和员工的健康和安全。
综上所述,人脸口罩面部检测系统不仅在当前疫情背景下具有重要的实用性和应用价值,还可以在各行各业中推广应用,用于提升公共卫生安全、保障人员健康等方面发挥重要作用。
博主通过搜集人脸面部是否佩戴口罩
的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5
开发了一款界面简洁的人脸面部口罩检测系统
,可支持图片、视频以及摄像头检测
,同时可以将图片或者视频检测结果进行保存
。
软件初始界面如下图所示:
检测结果界面如下:
一、软件核心功能介绍及效果演示
软件主要功能
1. 可进行戴口罩
、未带口罩
及未正确戴口罩
这3种状态的目标检测;
2. 支持图片、视频及摄像头
进行检测,同时支持图片的批量检测
;
3. 界面可实时显示目标位置
、目标总数
、置信度
、用时
等信息;
4. 支持图片
或者视频
的检测结果保存
;
(1)图片检测演示
点击图片
图标,选择需要检测的图片,或者点击文件夹图标
,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
批量图片检测操作如下:
(2)视频检测演示
点击视频
图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存
按钮,会对视频检测结果进行保存,存储路径为:save_data
目录下。
(3)摄像头检测演示
点击摄像头
图标,可以打开摄像头,可以实时进行检测,再次点击摄像头
图标,可关闭摄像头。
(4)保存图片与视频检测结果
点击保存
按钮后,会将当前选择的图片【含批量图片】或者视频
的检测结果进行保存。检测的图片与视频结果会存储在save_data
目录下。
二、模型的训练、评估与推理
1.YOLOv8的基本原理
YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
。
其主要网络结构如下:
2. 数据集准备与训练
通过网络上搜集关于人脸面部口罩的各类图片
,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含853张图片
,其中训练集包含682张图片
,验证集包含171张图片
,部分图像及标注如下图所示。
图片数据的存放格式如下,在项目目录中新建datasets
目录,同时将跌倒检测的图片分为训练集与验证集放入MaskData
目录下。
同时我们需要新建一个data.yaml
文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml
的具体内容如下:
train: E:\MyCVProgram\FacemaskDetection\datasets\MaskData\train # train images (relative to 'path') 128 images val: E:\MyCVProgram\FacemaskDetection\datasets\MaskData\val # val images (relative to 'path') 128 images test: # val images (optional) # number of classes nc: 3 # Classes names: ['Mask','NoMask','MaskIncorrect']
注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py
文件进行模型训练,epochs
参数用于调整训练的轮数,batch
参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:
# 加载模型 model = YOLO("yolov8n.pt") # 加载预训练模型 # Use the model if __name__ == '__main__': # Use the model results = model.train(data='datasets/MaskData/data.yaml', epochs=250, batch=4) # 训练模型 # 将模型转为onnx格式 # success = model.export(format='onnx')
3. 训练结果评估
在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/
目录下找到训练过程及结果文件,如下所示:
各损失函数作用说明:
定位损失box_loss
:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss
:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss)
:DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
我们通常用PR曲线
来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP
表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型3类目标检测的mAP@0.5
平均值为0.796
,结果还是很不错的。
4. 检测结果识别
模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt
文件,在runs/trian/weights
目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:
# 所需加载的模型目录 path = 'models/best.pt' # 需要检测的图片地址 img_path = "TestFiles/maksssksksss45.png" # 加载预训练模型 # conf 0.25 object confidence threshold for detection # iou 0.7 intersection over union (IoU) threshold for NMS model = YOLO(path, task='detect') # model = YOLO(path, task='detect',conf=0.5) # 检测图片 results = model(img_path) res = results[0].plot() cv2.imshow("YOLOv8 Detection", res) cv2.waitKey(0)
执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
以上便是关于此款人脸面部口罩检测系统
的原理与代码介绍。基于此模型,博主用python
与Pyqt5
开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存