【阿旭机器学习实战】【31】股票价格预测案例--线性回归

简介: 【阿旭机器学习实战】【31】股票价格预测案例--线性回归

1. 读取数据

import numpy as np # 数学计算
import pandas as pd # 数据处理
import matplotlib.pyplot as plt
from datetime import datetime as dt

关注公众号:阿旭算法与机器学习,回复:“ML31”即可获取本文数据集、源码与项目文档,欢迎共同学习交流

df = pd.read_csv('./000001.csv') 
print(np.shape(df))
df.head()
(611, 14)
date open high close low volume price_change p_change ma5 ma10 ma20 v_ma5 v_ma10 v_ma20
0 2019-05-30 12.32 12.38 12.22 12.11 646284.62 -0.18 -1.45 12.366 12.390 12.579 747470.29 739308.42 953969.39
1 2019-05-29 12.36 12.59 12.40 12.26 666411.50 -0.09 -0.72 12.380 12.453 12.673 751584.45 738170.10 973189.95
2 2019-05-28 12.31 12.55 12.49 12.26 880703.12 0.12 0.97 12.380 12.505 12.742 719548.29 781927.80 990340.43
3 2019-05-27 12.21 12.42 12.37 11.93 1048426.00 0.02 0.16 12.394 12.505 12.824 689649.77 812117.30 1001879.10
4 2019-05-24 12.35 12.45 12.35 12.31 495526.19 0.06 0.49 12.396 12.498 12.928 637251.61 781466.47 1046943.98

股票数据的特征

  • date:日期
  • open:开盘价
  • high:最高价
  • close:收盘价
  • low:最低价
  • volume:成交量
  • price_change:价格变动
  • p_change:涨跌幅
  • ma5:5日均价
  • ma10:10日均价
  • ma20:20日均价
  • v_ma5:5日均量
  • v_ma10:10日均量
  • v_ma20:20日均量
# 将每一个数据的键值的类型从字符串转为日期
df['date'] = pd.to_datetime(df['date'])
# 将日期变为索引
df = df.set_index('date')
# 按照时间升序排列
df.sort_values(by=['date'], inplace=True, ascending=True)
df.tail()
open high close low volume price_change p_change ma5 ma10 ma20 v_ma5 v_ma10 v_ma20
date
2019-05-24 12.35 12.45 12.35 12.31 495526.19 0.06 0.49 12.396 12.498 12.928 637251.61 781466.47 1046943.98
2019-05-27 12.21 12.42 12.37 11.93 1048426.00 0.02 0.16 12.394 12.505 12.824 689649.77 812117.30 1001879.10
2019-05-28 12.31 12.55 12.49 12.26 880703.12 0.12 0.97 12.380 12.505 12.742 719548.29 781927.80 990340.43
2019-05-29 12.36 12.59 12.40 12.26 666411.50 -0.09 -0.72 12.380 12.453 12.673 751584.45 738170.10 973189.95
2019-05-30 12.32 12.38 12.22 12.11 646284.62 -0.18 -1.45 12.366 12.390 12.579 747470.29 739308.42 953969.39
# 检测是否有缺失数据 NaNs
df.dropna(axis=0 , inplace=True)
df.isna().sum()
open            0
high            0
close           0
low             0
volume          0
price_change    0
p_change        0
ma5             0
ma10            0
ma20            0
v_ma5           0
v_ma10          0
v_ma20          0
dtype: int64

K线图绘制

Min_date = df.index.min()
Max_date = df.index.max()
print ("First date is",Min_date)
print ("Last date is",Max_date)
print (Max_date - Min_date)
First date is 2016-11-29 00:00:00
Last date is 2019-05-30 00:00:00
912 days 00:00:00
from plotly import tools
from plotly.graph_objs import *
from plotly.offline import init_notebook_mode, iplot, iplot_mpl
init_notebook_mode()
import chart_studio.plotly as py
import plotly.graph_objs as go
trace = go.Ohlc(x=df.index, open=df['open'], high=df['high'], low=df['low'], close=df['close'])
data = [trace]
iplot(data, filename='simple_ohlc')

2.构建回归模型

from sklearn.linear_model import LinearRegression
from sklearn import preprocessing
# 创建标签数据:即预测值, 根据当前的数据预测5天以后的收盘价
num = 5 # 预测5天后的情况
df['label'] = df['close'].shift(-num) # 预测值,将5天后的收盘价当作当前样本的标签
                                     
print(df.shape)
(611, 14)
# 丢弃 'label', 'price_change', 'p_change', 不需要它们做预测
Data = df.drop(['label', 'price_change', 'p_change'],axis=1)
Data.tail()
open high close low volume ma5 ma10 ma20 v_ma5 v_ma10 v_ma20
date
2019-05-24 12.35 12.45 12.35 12.31 495526.19 12.396 12.498 12.928 637251.61 781466.47 1046943.98
2019-05-27 12.21 12.42 12.37 11.93 1048426.00 12.394 12.505 12.824 689649.77 812117.30 1001879.10
2019-05-28 12.31 12.55 12.49 12.26 880703.12 12.380 12.505 12.742 719548.29 781927.80 990340.43
2019-05-29 12.36 12.59 12.40 12.26 666411.50 12.380 12.453 12.673 751584.45 738170.10 973189.95
2019-05-30 12.32 12.38 12.22 12.11 646284.62 12.366 12.390 12.579 747470.29 739308.42 953969.39
X = Data.values
# 去掉最后5行,因为没有Y的值
X = X[:-num]
# 将特征进行归一化
X = preprocessing.scale(X)
# 去掉标签为null的最后5行
df.dropna(inplace=True)
Target = df.label
y = Target.values
print(np.shape(X), np.shape(y))
(606, 11) (606,)
# 将数据分为训练数据和测试数据
X_train, y_train = X[0:550, :], y[0:550]
X_test, y_test = X[550:, -51:], y[550:606]
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
(550, 11)
(550,)
(56, 11)
(56,)
lr = LinearRegression()
lr.fit(X_train, y_train)
lr.score(X_test, y_test) # 使用绝对系数 R^2 评估模型
0.04930040648385525
# 做预测 :取最后5行数据,预测5天后的股票价格
X_Predict = X[-num:]
Forecast = lr.predict(X_Predict)
print(Forecast)
print(y[-num:])
[12.5019651  12.45069629 12.56248765 12.3172638  12.27070154]
[12.35 12.37 12.49 12.4  12.22]
• 1
• 2
# 查看模型的各个特征参数的系数值
for idx, col_name in enumerate(['open', 'high', 'close', 'low', 'volume', 'ma5', 'ma10', 'ma20', 'v_ma5', 'v_ma10', 'v_ma20']):
    print("The coefficient for {} is {}".format(col_name, lr.coef_[idx]))
The coefficient for open is -0.7623399996475224
The coefficient for high is 0.8321435171405448
The coefficient for close is 0.24463705375238926
The coefficient for low is 1.091415550493547
The coefficient for volume is 0.0043807937569128675
The coefficient for ma5 is -0.30717535019465575
The coefficient for ma10 is 0.1935431079947582
The coefficient for ma20 is 0.24902077484698157
The coefficient for v_ma5 is 0.17472336466033722
The coefficient for v_ma10 is 0.08873934447969857
The coefficient for v_ma20 is -0.27910702694420775

3.绘制预测结果

# 预测 2019-05-13 到 2019-05-17 , 一共 5 天的收盘价 
trange = pd.date_range('2019-05-13', periods=num, freq='d')
trange
DatetimeIndex(['2019-05-13', '2019-05-14', '2019-05-15', '2019-05-16',
               '2019-05-17'],
              dtype='datetime64[ns]', freq='D')
# 产生预测值dataframe
Predict_df = pd.DataFrame(Forecast, index=trange)
Predict_df.columns = ['forecast']
Predict_df
forecast
2019-05-13 12.501965
2019-05-14 12.450696
2019-05-15 12.562488
2019-05-16 12.317264
2019-05-17 12.270702
# 将预测值添加到原始dataframe
df = pd.read_csv('./000001.csv') 
df['date'] = pd.to_datetime(df['date'])
df = df.set_index('date')
# 按照时间升序排列
df.sort_values(by=['date'], inplace=True, ascending=True)
df_concat = pd.concat([df, Predict_df], axis=1)
df_concat = df_concat[df_concat.index.isin(Predict_df.index)]
df_concat.tail(num)
open high close low volume price_change p_change ma5 ma10 ma20 v_ma5 v_ma10 v_ma20 forecast
2019-05-13 12.33 12.54 12.30 12.23 741917.75 -0.38 -3.00 12.538 13.143 13.637 1107915.51 1191640.89 1211461.61 12.501965
2019-05-14 12.20 12.75 12.49 12.16 1182598.12 0.19 1.54 12.446 12.979 13.585 1129903.46 1198753.07 1237823.69 12.450696
2019-05-15 12.58 13.11 12.92 12.57 1103988.50 0.43 3.44 12.510 12.892 13.560 1155611.00 1208209.79 1254306.88 12.562488
2019-05-16 12.93 12.99 12.85 12.78 634901.44 -0.07 -0.54 12.648 12.767 13.518 971160.96 1168630.36 1209357.42 12.317264
2019-05-17 12.92 12.93 12.44 12.36 965000.88 -0.41 -3.19 12.600 12.626 13.411 925681.34 1153473.43 1138638.70 12.270702
# 画预测值和实际值
df_concat['close'].plot(color='green', linewidth=1)
df_concat['forecast'].plot(color='orange', linewidth=3)
plt.xlabel('Time')
plt.ylabel('Price')
plt.show()


相关文章
|
10月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
515 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
10月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
181 3
|
11月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
135 3
|
11月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
机器学习/深度学习 TensorFlow 算法框架/工具
探索机器学习:从线性回归到深度学习
在这篇文章中,我们将一起踏上一场激动人心的旅程,穿越机器学习的广阔天地。我们将从最基本的线性回归开始,逐步深入到复杂的深度学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。让我们一起探索这个充满无限可能的世界吧!
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
|
11月前
|
机器学习/深度学习 数据采集 算法
探索机器学习中的线性回归
【10月更文挑战第25天】本文将深入浅出地介绍线性回归模型,一个在机器学习领域中广泛使用的预测工具。我们将从理论出发,逐步引入代码示例,展示如何利用Python和scikit-learn库实现一个简单的线性回归模型。文章不仅适合初学者理解线性回归的基础概念,同时也为有一定基础的读者提供实践指导。
|
5月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
11月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1074 6
|
6月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。

热门文章

最新文章