【从零开始学习深度学习】46. 目标检测中锚框的概念、计算方法、样本锚框标注方式及如何选取预测边界框

简介: 【从零开始学习深度学习】46. 目标检测中锚框的概念、计算方法、样本锚框标注方式及如何选取预测边界框

1. 锚框介绍

目标检测算法中通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘位置从而更准确地预测目标的真实边界框(ground-truth bounding box)。不同的模型使用的区域采样方法可能不同。此处介绍其中一种采样方法:它以每个像素为中心生成多个大小和宽高比(aspect ratio)不同的边界框。这些边界框被称为锚框(anchor box)。后续我们将基于锚框实践目标检测。

先导入一下相关包。

%matplotlib inline
from PIL import Image
import numpy as np
import math
import torch
import sys
import d2lzh_pytorch as d2l
print(torch.__version__) # 1.10.2+cpu

1.1 生成多个锚框


image.png

以上生成锚框的方法实现在下面的MultiBoxPrior函数中。指定输入、一组大小和一组宽高比,该函数将返回输入的所有锚框。

注: PyTorch官方在torchvision.models.detection.rpn里有一个AnchorGenerator类也可以用来生成anchor。

d2l.set_figsize()
img = Image.open('./img/catdog.jpg')
w, h = img.size
print("w = %d, h = %d" % (w, h)) # w = 728, h = 561
def MultiBoxPrior(feature_map, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5]):
    """
    # 生成多个锚框, anchor表示成(xmin, ymin, xmax, ymax).
    https://zh.d2l.ai/chapter_computer-vision/anchor.html
    Args:
        feature_map: torch tensor, Shape: [N, C, H, W].
        sizes: List of sizes (0~1) of generated MultiBoxPriores. 
        ratios: List of aspect ratios (non-negative) of generated MultiBoxPriores. 
    Returns:
        anchors of shape (1, num_anchors, 4). 由于batch里每个都一样, 所以第一维为1
    """
    h, w = feature_map.shape[-2:]
    
    pairs = [] # pair of (size, sqrt(ration))
    
    for r in ratios:
        pairs.append([math.sqrt(sizes[0]*h*w), math.sqrt(r)])
    for s in sizes[1:]:
        pairs.append([math.sqrt(s*h*w), math.sqrt(ratios[0])])
    
    pairs = np.array(pairs)
    
    # 坐标值分别除以图像的宽和高,因此值域均为0和1之间
    ss1 = pairs[:, 0] * pairs[:, 1] / w # sqrt(size*h*w) * sqrt(ration)/w
    ss2 = pairs[:, 0] / pairs[:, 1] / h # sqrt(size*h*w) / sqrt(ration)/h
    
    base_anchors = np.stack([-ss1, -ss2, ss1, ss2], axis=1) / 2
    
    shifts_x = np.arange(0, w) / w
    shifts_y = np.arange(0, h) / h
    shift_x, shift_y = np.meshgrid(shifts_x, shifts_y)
    shift_x = shift_x.reshape(-1)
    shift_y = shift_y.reshape(-1)
    shifts = np.stack((shift_x, shift_y, shift_x, shift_y), axis=1)
    
    anchors = shifts.reshape((-1, 1, 4)) + base_anchors.reshape((1, -1, 4))
    
    # 返回的坐标已经分别除以了w,h,因此都是小于1的数
    return torch.tensor(anchors, dtype=torch.float32).view(1, -1, 4)
X = torch.Tensor(1, 3, h, w)  # 构造输入数据
Y = MultiBoxPrior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape # torch.Size([1, 2042040, 4])

我们看到,返回锚框变量y的形状为(1,锚框个数,4),4表示左上角和右下角两点的x,y坐标。将锚框变量y的形状变为(图像高,图像宽,以相同像素为中心的锚框个数n+m-1,4)后,我们就可以通过指定像素位置来获取所有以该像素为中心的锚框了。下面的例子里我们访问以(250,250)为中心的第一个锚框。它有4个元素,分别是锚框左上角的xy轴坐标和右下角的xy轴坐标,其中x xxy yy轴的坐标值分别已除以图像的宽和高,因此值域均为0和1之间。

boxes = Y.reshape((h, w, 5, 4))
# 以(250,250)为中心的第一个锚框
boxes[250, 250, 0, :]
# 输出结果形状: torch.tensor([w, h, w, h], dtype=torch.float32)

输出:

tensor([-0.0367, -0.0476,  0.7235,  0.9389])

为了描绘图像中以某个像素为中心的所有锚框,我们先定义show_bboxes函数以便在图像上画出多个边界框。

def show_bboxes(axes, bboxes, labels=None, colors=None):
    def _make_list(obj, default_values=None):
        if obj is None:
            obj = default_values
        elif not isinstance(obj, (list, tuple)):
            obj = [obj]
        return obj
    labels = _make_list(labels)
    colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
    for i, bbox in enumerate(bboxes):
        color = colors[i % len(colors)]
        rect = d2l.bbox_to_rect(bbox.detach().cpu().numpy(), color)
        axes.add_patch(rect)
        if labels and len(labels) > i:
            # 标注信息
            text_color = 'k' if color == 'w' else 'w'
            axes.text(rect.xy[0], rect.xy[1], labels[i],
                      va='center', ha='center', fontsize=6, color=text_color,
                      bbox=dict(facecolor=color, lw=0))

刚刚我们看到,变量boxesxy轴的坐标值分别已除以图像的宽和高。在绘图时,我们需要恢复锚框的原始坐标值,并因此定义了变量bbox_scale。现在,我们可以画出图像中以(250, 250)为中心的所有锚框了。可以看到,大小为0.75且宽高比为1的锚框较好地覆盖了图像中的狗。

d2l.set_figsize()
fig = d2l.plt.imshow(img)
bbox_scale = torch.tensor([[w, h, w, h]], dtype=torch.float32)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,
            ['s=0.75, r=1', 's=0.75, r=2', 's=0.55, r=0.5', 's=0.5, r=1', 's=0.25, r=1'])

2. 交并比–Jaccard系数

为了较好的衡量锚框和真实边界框之间的相似度,定义了一个Jaccard系数(Jaccard index)【也称交并比】来衡量两个集合的相似度。给定集合AB,它们的Jaccard系数即二者交集大小除以二者并集大小:


image.png

实际上,我们可以把边界框内的像素区域看成是像素的集合。如此一来,我们可以用两个边界框的像素集合的Jaccard系数衡量这两个边界框的相似度。当衡量两个边界框的相似度时,我们通常将Jaccard系数称为交并比(Intersection over Union,IoU),即两个边界框相交面积与相并面积之比,如下图所示。交并比的取值范围在0和1之间:0表示两个边界框无重合像素,1表示两个边界框相等。

下面我们对其进行实现。

def compute_intersection(set_1, set_2):
    """
    计算anchor之间的交集
    set_1为n1个锚点的集合,形状 (n1, 4),set_2为n2个锚点的集合形状 (n2, 4)
    return: n1个锚点与n2个锚点的交集,形状(n1, n2)
    Args:
        set_1: a tensor of dimensions (n1, 4), anchor表示成(xmin, ymin, xmax, ymax)
        set_2: a tensor of dimensions (n2, 4), anchor表示成(xmin, ymin, xmax, ymax)
    Returns:
        intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, shape: (n1, n2)
    """
    # PyTorch auto-broadcasts singleton dimensions
    lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2].unsqueeze(0))  # (n1, n2, 2)
    upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:].unsqueeze(0))  # (n1, n2, 2)
    intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0)  # (n1, n2, 2)
    return intersection_dims[:, :, 0] * intersection_dims[:, :, 1]  # (n1, n2)
def compute_jaccard(set_1, set_2):
    """
    计算anchor之间的Jaccard系数(IoU)
    Args:
        set_1: a tensor of dimensions (n1, 4), anchor表示成(xmin, ymin, xmax, ymax)
        set_2: a tensor of dimensions (n2, 4), anchor表示成(xmin, ymin, xmax, ymax)
    Returns:
        Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, shape: (n1, n2)
    """
    # Find intersections
    intersection = compute_intersection(set_1, set_2)  # (n1, n2)
    # Find areas of each box in both sets
    areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1])  # (n1)
    areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1])  # (n2)
    # Find the union
    # PyTorch auto-broadcasts singleton dimensions
    union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection  # (n1, n2)
    return intersection / union  # (n1, n2)

后续我们将使用交并比来衡量锚框与真实边界框以及锚框与锚框之间的相似度。

3. 标注训练集的锚框

在训练集中,我们将每个锚框视为一个训练样本。为了训练目标检测模型,我们需要为每个锚框标注两类标签:一是锚框所含目标的类别,简称类别;二是真实边界框相对锚框的偏移量,简称偏移量(offset)

在目标检测时,我们首先生成多个锚框,然后为每个锚框预测类别以及偏移量,接着根据预测的偏移量调整锚框位置从而得到预测边界框,最后筛选需要输出的预测边界框。

我们知道,在目标检测的训练集中,每个图像已标注了真实边界框的位置以及所含目标的类别。在生成锚框之后,我们主要依据与锚框相似的真实边界框的位置和类别信息为锚框标注。那么,该如何为锚框分配与其相似的真实边界框呢?


image.png


image.png

bbox_scale = torch.tensor((w, h, w, h), dtype=torch.float32)
# 真实边界框
ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],
                            [1, 0.55, 0.2, 0.9, 0.88]])
# 5个需要标注的锚框
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
                    [0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
                    [0.57, 0.3, 0.92, 0.9]])
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);

下面实现MultiBoxTarget函数来为锚框标注类别和偏移量。该函数将背景类别设为0,并令从零开始的目标类别的整数索引自加1(1为狗,2为猫)。

def assign_anchor(bb, anchor, jaccard_threshold=0.5):
    """
    # 为每个anchor分配真实的bb, anchor表示成归一化(xmin, ymin, xmax, ymax).
    Args:
        bb: 真实边界框(bounding box), shape:(nb, 4)
        anchor: 待分配的anchor, shape:(na, 4)
        jaccard_threshold: 预先设定的阈值
    Returns:
        assigned_idx: shape: (na, ), 每个anchor分配的真实bb对应的索引, 若未分配任何bb则为-1
    """
    na = anchor.shape[0]
    nb = bb.shape[0]
    jaccard = compute_jaccard(anchor, bb).detach().cpu().numpy() # shape: (na, nb)
    assigned_idx = np.ones(na) * -1  # 初始全为-1
    
    # 先为每个bb分配一个anchor(不要求满足jaccard_threshold)
    jaccard_cp = jaccard.copy()
    for j in range(nb):
        i = np.argmax(jaccard_cp[:, j])
        assigned_idx[i] = j
        jaccard_cp[i, :] = float("-inf") # 赋值为负无穷, 相当于去掉这一行
     
    # 处理还未被分配的anchor, 要求满足jaccard_threshold
    for i in range(na):
        if assigned_idx[i] == -1:
            j = np.argmax(jaccard[i, :])
            if jaccard[i, j] >= jaccard_threshold:
                assigned_idx[i] = j
    
    return torch.tensor(assigned_idx, dtype=torch.long)
def xy_to_cxcy(xy):
    """
    将(x_min, y_min, x_max, y_max)形式的anchor转换成(center_x, center_y, w, h)形式的.
    Args:
        xy: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
    Returns: 
        bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
    """
    return torch.cat([(xy[:, 2:] + xy[:, :2]) / 2,  # c_x, c_y
                      xy[:, 2:] - xy[:, :2]], 1)  # w, h
def MultiBoxTarget(anchor, label):
    """
    #  anchor表示成归一化(xmin, ymin, xmax, ymax).
    Args:
        anchor: torch tensor, 输入的锚框, 一般是通过MultiBoxPrior生成, shape:(1,锚框总数,4)
        label: 真实标签, shape为(bn, 每张图片最多的真实锚框数, 5)
               第二维中,如果给定图片没有这么多锚框, 可以先用-1填充空白, 最后一维中的元素为[类别标签, 四个坐标值]
    Returns:
        列表, [bbox_offset, bbox_mask, cls_labels]
        bbox_offset: 每个锚框的标注偏移量,形状为(bn,锚框总数*4)
        bbox_mask: 形状同bbox_offset, 每个锚框的掩码, 一一对应上面的偏移量, 负类锚框(背景)对应的掩码均为0, 正类锚框的掩码均为1
        cls_labels: 每个锚框的标注类别, 其中0表示为背景, 形状为(bn,锚框总数)
    """
    assert len(anchor.shape) == 3 and len(label.shape) == 3
    bn = label.shape[0]
    
    def MultiBoxTarget_one(anc, lab, eps=1e-6):
        """
        MultiBoxTarget函数的辅助函数, 处理batch中的一个
        Args:
            anc: shape of (锚框总数, 4)
            lab: shape of (真实锚框数, 5), 5代表[类别标签, 四个坐标值]
            eps: 一个极小值, 防止log0
        Returns:
            offset: (锚框总数*4, )
            bbox_mask: (锚框总数*4, ), 0代表背景, 1代表非背景
            cls_labels: (锚框总数, 4), 0代表背景
        """
        an = anc.shape[0]
        assigned_idx = assign_anchor(lab[:, 1:], anc) # (锚框总数, )
        bbox_mask = ((assigned_idx >= 0).float().unsqueeze(-1)).repeat(1, 4) # (锚框总数, 4)
        cls_labels = torch.zeros(an, dtype=torch.long) # 0表示背景
        assigned_bb = torch.zeros((an, 4), dtype=torch.float32) # 所有anchor对应的bb坐标
        for i in range(an):
            bb_idx = assigned_idx[i]
            if bb_idx >= 0: # 即非背景
                cls_labels[i] = lab[bb_idx, 0].long().item() + 1 # 注意要加一
                assigned_bb[i, :] = lab[bb_idx, 1:]
        center_anc = xy_to_cxcy(anc) # (center_x, center_y, w, h)
        center_assigned_bb = xy_to_cxcy(assigned_bb)
        offset_xy = 10.0 * (center_assigned_bb[:, :2] - center_anc[:, :2]) / center_anc[:, 2:]
        offset_wh = 5.0 * torch.log(eps + center_assigned_bb[:, 2:] / center_anc[:, 2:])
        offset = torch.cat([offset_xy, offset_wh], dim = 1) * bbox_mask # (锚框总数, 4)
        return offset.view(-1), bbox_mask.view(-1), cls_labels
    
    batch_offset = []
    batch_mask = []
    batch_cls_labels = []
    for b in range(bn):
        offset, bbox_mask, cls_labels = MultiBoxTarget_one(anchor[0, :, :], label[b, :, :])
        
        batch_offset.append(offset)
        batch_mask.append(bbox_mask)
        batch_cls_labels.append(cls_labels)
    
    bbox_offset = torch.stack(batch_offset)
    bbox_mask = torch.stack(batch_mask)
    cls_labels = torch.stack(batch_cls_labels)
    
    return [bbox_offset, bbox_mask, cls_labels]

我们通过unsqueeze函数为锚框和真实边界框添加样本维。

labels = MultiBoxTarget(anchors.unsqueeze(dim=0),
                        ground_truth.unsqueeze(dim=0))

返回的结果里有3项,均为Tensor。第三项表示为锚框标注的类别。

labels[2] 

输出:

tensor([[0, 1, 2, 0, 2]])

我们根据锚框与真实边界框在图像中的位置来分析这些标注的类别。首先,在所有的“锚框—真实边界框”的配对中,锚框A4与猫的真实边界框的交并比最大,因此锚框A4的类别标注为猫。不考虑锚框A4或猫的真实边界框,在剩余的“锚框—真实边界框”的配对中,最大交并比的配对为锚框A1和狗的真实边界框,因此锚框A1的类别标注为狗。接下来遍历未标注的剩余3个锚框:与锚框A0交并比最大的真实边界框的类别为狗,但交并比小于阈值(默认为0.5),因此类别标注为背景;与锚框A2交并比最大的真实边界框的类别为猫,且交并比大于阈值,因此类别标注为猫;与锚框A3交并比最大的真实边界框的类别为猫,但交并比小于阈值,因此类别标注为背景。

返回值的第二项为掩码(mask)变量,形状为(批量大小, 锚框个数*4)。掩码变量中的元素与每个锚框的4个偏移量一一对应。

由于我们不关心对背景的检测,有关负类的偏移量不应影响目标函数。通过按元素乘法,掩码变量中的0可以在计算目标函数之前过滤掉负类的偏移量。

labels[1]

输出:

tensor([[0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 1., 1.,
         1., 1.]])

返回的第一项是为每个锚框标注的四个偏移量,其中负类锚框的偏移量标注为0。

labels[0]

输出:

tensor([[-0.0000e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00,  1.4000e+00,
          1.0000e+01,  2.5940e+00,  7.1754e+00, -1.2000e+00,  2.6882e-01,
          1.6824e+00, -1.5655e+00, -0.0000e+00, -0.0000e+00, -0.0000e+00,
         -0.0000e+00, -5.7143e-01, -1.0000e+00,  4.1723e-06,  6.2582e-01]])

4. 输出预测边界框—非极大值抑制方法

在模型预测阶段,我们先为图像生成多个锚框,并为这些锚框一一预测类别和偏移量。随后,我们根据锚框及其预测偏移量得到预测边界框。当锚框数量较多时,同一个目标上可能会输出较多相似的预测边界框。为了使结果更加简洁,我们可以移除相似的预测边界框。常用的方法叫作非极大值抑制(non-maximum suppression,NMS)

我们来描述一下非极大值抑制的工作原理。对于一个预测边界框B BB,模型会计算各个类别的预测概率。设其中最大的预测概率为p,该概率所对应的类别即B的预测类别。我们也将p称为预测边界框B的置信度。在同一图像上,我们将预测类别非背景的预测边界框按置信度从高到低排序,得到列表L。从L中选取置信度最高的预测边界框B1作为基准,将所有与B1的交并比大于某阈值的非基准预测边界框从L中移除。这里的阈值是预先设定的超参数。此时,L保留了置信度最高的预测边界框并移除了与其相似的其他预测边界框。

接下来,从L中选取置信度第二高的预测边界框B2作为基准,将所有与B2的交并比大于某阈值的非基准预测边界框从L中移除。重复这一过程,直到L中所有的预测边界框都曾作为基准。此时L中任意一对预测边界框的交并比都小于阈值。最终,输出列表L中的所有预测边界框。

下面来看一个具体的例子。先构造4个锚框。简单起见,我们假设预测偏移量全是0:预测边界框即锚框。最后,我们构造每个类别的预测概率。

anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],
                        [0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])
offset_preds = torch.tensor([0.0] * (4 * len(anchors)))
cls_probs = torch.tensor([[0., 0., 0., 0.,],  # 背景的预测概率
                          [0.9, 0.8, 0.7, 0.1],  # 狗的预测概率
                          [0.1, 0.2, 0.3, 0.9]])  # 猫的预测概率

在图像上打印预测边界框和它们的置信度。

fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,
            ['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])

下面我们实现MultiBoxDetection函数来执行非极大值抑制。

from collections import namedtuple
Pred_BB_Info = namedtuple("Pred_BB_Info", ["index", "class_id", "confidence", "xyxy"])
def non_max_suppression(bb_info_list, nms_threshold = 0.5):
    """
    非极大抑制处理预测的边界框
    Args:
        bb_info_list: Pred_BB_Info的列表, 包含预测类别、置信度等信息
        nms_threshold: 阈值
    Returns:
        output: Pred_BB_Info的列表, 只保留过滤后的边界框信息
    """
    output = []
    # 先根据置信度从高到低排序
    sorted_bb_info_list = sorted(bb_info_list, key = lambda x: x.confidence, reverse=True)
    while len(sorted_bb_info_list) != 0:
        best = sorted_bb_info_list.pop(0)
        output.append(best)
        
        if len(sorted_bb_info_list) == 0:
            break
        bb_xyxy = []
        for bb in sorted_bb_info_list:
            bb_xyxy.append(bb.xyxy)
        
        iou = compute_jaccard(torch.tensor([best.xyxy]), 
                              torch.tensor(bb_xyxy))[0] # shape: (len(sorted_bb_info_list), )
        
        n = len(sorted_bb_info_list)
        sorted_bb_info_list = [sorted_bb_info_list[i] for i in range(n) if iou[i] <= nms_threshold]
    return output
def MultiBoxDetection(cls_prob, loc_pred, anchor, nms_threshold = 0.5):
    """
    # anchor表示成归一化(xmin, ymin, xmax, ymax).
    Args:
        cls_prob: 经过softmax后得到的各个锚框的预测概率, shape:(bn, 预测总类别数+1, 锚框个数)
        loc_pred: 预测的各个锚框的偏移量, shape:(bn, 锚框个数*4)
        anchor: MultiBoxPrior输出的默认锚框, shape: (1, 锚框个数, 4)
        nms_threshold: 非极大抑制中的阈值
    Returns:
        所有锚框的信息, shape: (bn, 锚框个数, 6)
        每个锚框信息由[class_id, confidence, xmin, ymin, xmax, ymax]表示
        class_id=-1 表示背景或在非极大值抑制中被移除了
    """
    assert len(cls_prob.shape) == 3 and len(loc_pred.shape) == 2 and len(anchor.shape) == 3
    bn = cls_prob.shape[0]
    
    def MultiBoxDetection_one(c_p, l_p, anc, nms_threshold = 0.5):
        """
        MultiBoxDetection的辅助函数, 处理batch中的一个
        Args:
            c_p: (预测总类别数+1, 锚框个数)
            l_p: (锚框个数*4, )
            anc: (锚框个数, 4)
            nms_threshold: 非极大抑制中的阈值
        Return:
            output: (锚框个数, 6)
        """
        pred_bb_num = c_p.shape[1]
        anc = (anc + l_p.view(pred_bb_num, 4)).detach().cpu().numpy() # 加上偏移量
        
        confidence, class_id = torch.max(c_p, 0)
        confidence = confidence.detach().cpu().numpy()
        class_id = class_id.detach().cpu().numpy()
        
        pred_bb_info = [Pred_BB_Info(
                            index = i,
                            class_id = class_id[i] - 1, # 正类label从0开始
                            confidence = confidence[i],
                            xyxy=[*anc[i]]) # xyxy是个列表
                        for i in range(pred_bb_num)]
        
        # 正类的index
        obj_bb_idx = [bb.index for bb in non_max_suppression(pred_bb_info, nms_threshold)]
        
        output = []
        for bb in pred_bb_info:
            output.append([
                (bb.class_id if bb.index in obj_bb_idx else -1.0),
                bb.confidence,
                *bb.xyxy
            ])
            
        return torch.tensor(output) # shape: (锚框个数, 6)
    
    batch_output = []
    for b in range(bn):
        batch_output.append(MultiBoxDetection_one(cls_prob[b], loc_pred[b], anchor[0], nms_threshold))
    
    return torch.stack(batch_output)

然后我们运行MultiBoxDetection函数并设阈值为0.5。这里为输入都增加了样本维。我们看到,返回的结果的形状为(批量大小, 锚框个数, 6)。其中每一行的6个元素代表同一个预测边界框的输出信息。第一个元素是索引从0开始计数的预测类别(0为狗,1为猫),其中-1表示背景或在非极大值抑制中被移除。第二个元素是预测边界框的置信度。剩余的4个元素分别是预测边界框左上角的xy轴坐标以及右下角的xy轴坐标(值域在0到1之间)。

output = MultiBoxDetection(
    cls_probs.unsqueeze(dim=0), offset_preds.unsqueeze(dim=0),
    anchors.unsqueeze(dim=0), nms_threshold=0.5)
output

输出:

tensor([[[ 0.0000,  0.9000,  0.1000,  0.0800,  0.5200,  0.9200],
         [-1.0000,  0.8000,  0.0800,  0.2000,  0.5600,  0.9500],
         [-1.0000,  0.7000,  0.1500,  0.3000,  0.6200,  0.9100],
         [ 1.0000,  0.9000,  0.5500,  0.2000,  0.9000,  0.8800]]])

我们移除掉类别为-1的预测边界框,并可视化非极大值抑制保留的结果。

fig = d2l.plt.imshow(img)
for i in output[0].detach().cpu().numpy():
    if i[0] == -1:
        continue
    label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
    show_bboxes(fig.axes, [torch.tensor(i[2:]) * bbox_scale], label)

实践中,我们可以在执行非极大值抑制前将置信度较低的预测边界框移除,从而减小非极大值抑制的计算量。我们还可以筛选非极大值抑制的输出,例如,只保留其中置信度较高的结果作为最终输出。

总结

  • 以每个像素为中心,生成多个大小和宽高比不同的锚框。
  • 交并比是两个边界框相交面积与相并面积之比。
  • 在训练集中,为每个锚框标注两类标签:一是锚框所含目标的类别;二是真实边界框相对锚框的偏移量。
  • 预测时,可以使用非极大值抑制来移除相似的预测边界框。
相关文章
|
6天前
|
机器学习/深度学习 并行计算 算法
深度学习中的自动化超参数优化方法探究
传统的深度学习模型优化通常依赖于人工调整超参数,这一过程繁琐且耗时。本文探讨了当前流行的自动化超参数优化方法,包括贝叶斯优化、遗传算法和进化策略等,分析它们在提高模型效率和性能方面的应用与挑战。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应学习算法研究与应用
在深度学习领域,传统的静态模型在处理动态环境和非平稳数据时面临挑战。本文探讨了自适应学习算法在深度学习中的重要性及其应用。通过分析自适应学习算法在模型参数、损失函数和数据分布上的应用,展示了其在提升模型鲁棒性和泛化能力方面的潜力。具体讨论了几种代表性的自适应学习方法,并探索了它们在现实世界中的应用案例,从而展示了其在处理复杂问题和动态数据中的效果。
18 0
|
2天前
|
机器学习/深度学习 自然语言处理 自动驾驶
深度学习中的自监督学习:突破数据标注瓶颈的新路径
随着深度学习在各个领域的广泛应用,数据标注的高成本和耗时逐渐成为限制其发展的瓶颈。自监督学习作为一种无需大量人工标注数据的方法,正在引起越来越多的关注。本文探讨了自监督学习的基本原理、经典方法及其在实际应用中的优势与挑战。
12 5
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
OpenCV与AI深度学习之常用AI名词解释学习
AGI:Artificial General Intelligence (通用人工智能):是指具备与人类同等或超越人类的智能,能够表现出正常人类所具有的所有智能行为。又被称为强人工智能。
14 2
|
7天前
|
机器学习/深度学习 监控 自动驾驶
深度学习之2D目标检测
2D目标检测是深度学习中的一个关键任务,旨在识别图像中的目标对象,并在每个目标对象周围生成一个边界框。该任务在自动驾驶、视频监控、机器人视觉等领域具有广泛应用。以下是对深度学习中2D目标检测的详细介绍,包括其基本概念、主要方法、常见模型、应用场景、优势和挑战。
16 4
|
9天前
|
机器学习/深度学习 人工智能 算法
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
17 3
|
12天前
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
12天前
|
机器学习/深度学习 存储 算法
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
|
12天前
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
12天前
|
机器学习/深度学习 资源调度 PyTorch
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】