详解布隆过滤器的原理、使用场景和注意事项

简介: 详解布隆过滤器的原理、使用场景和注意事项

去重去重去重(如果懂原理,直接看下边吧)


今天碰到个业务,他的 Redis 集群有个大 Value 用途是作为布隆过滤器,但沟通的时候被小怼了一下,意思大概是 “布隆过滤器原理都不懂,还要我优化?”。技术菜被人怼认了、怪不得别人,自己之前确实只是听说过这个,但是没深入了解过,趁这个机会补充一下知识。


在进入正文之前,之前看到的有句话我觉得说得很好:


Data structures are nothing different. They are like the bookshelves of your application where you can organize your data. Different data structures will give you different facility and benefits. To properly use the power and accessibility of the data structures you need to know the trade-offs of using one.


大意是不同的数据结构有不同的适用场景和优缺点,你需要仔细权衡自己的需求之后妥善适用它们,布隆过滤器就是践行这句话的代表。


什么是布隆过滤器

本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。


相比于传统的 List、Set、Map 等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。


实现原理

HashMap 的问题

讲述布隆过滤器的原理之前,我们先思考一下,通常你判断某个元素是否存在用的是什么?应该蛮多人回答 HashMap 吧,确实可以将值映射到 HashMap 的 Key,然后可以在 O(1) 的时间复杂度内返回结果,效率奇高。但是 HashMap 的实现也有缺点,例如存储容量占比高,考虑到负载因子的存在,通常空间是不能被用满的,而一旦你的值很多例如上亿的时候,那 HashMap 占据的内存大小就变得很可观了。


还比如说你的数据集存储在远程服务器上,本地服务接受输入,而数据集非常大不可能一次性读进内存构建 HashMap 的时候,也会存在问题。


布隆过滤器数据结构

布隆过滤器是一个 bit 向量或者说 bit 数组,长这样:





image


如果我们要映射一个值到布隆过滤器中,我们需要使用多个不同的哈希函数生成多个哈希值,并对每个生成的哈希值指向的 bit 位置 1,例如针对值 “baidu” 和三个不同的哈希函数分别生成了哈希值 1、4、7,则上图转变为:





image


Ok,我们现在再存一个值 “tencent”,如果哈希函数返回 3、4、8 的话,图继续变为:





image


值得注意的是,4 这个 bit 位由于两个值的哈希函数都返回了这个 bit 位,因此它被覆盖了。现在我们如果想查询 “dianping” 这个值是否存在,哈希函数返回了 1、5、8三个值,结果我们发现 5 这个 bit 位上的值为 0,说明没有任何一个值映射到这个 bit 位上,因此我们可以很确定地说 “dianping” 这个值不存在。而当我们需要查询 “baidu” 这个值是否存在的话,那么哈希函数必然会返回 1、4、7,然后我们检查发现这三个 bit 位上的值均为 1,那么我们可以说 “baidu” 存在了么?答案是不可以,只能是 “baidu” 这个值可能存在。


这是为什么呢?答案跟简单,因为随着增加的值越来越多,被置为 1 的 bit 位也会越来越多,这样某个值 “taobao” 即使没有被存储过,但是万一哈希函数返回的三个 bit 位都被其他值置位了 1 ,那么程序还是会判断 “taobao” 这个值存在。


支持删除么

目前我们知道布隆过滤器可以支持 add 和 isExist 操作,那么 delete 操作可以么,答案是不可以,例如上图中的 bit 位 4 被两个值共同覆盖的话,一旦你删除其中一个值例如 “tencent” 而将其置位 0,那么下次判断另一个值例如 “baidu” 是否存在的话,会直接返回 false,而实际上你并没有删除它。


如何解决这个问题,答案是计数删除。但是计数删除需要存储一个数值,而不是原先的 bit 位,会增大占用的内存大小。这样的话,增加一个值就是将对应索引槽上存储的值加一,删除则是减一,判断是否存在则是看值是否大于0。


如何选择哈希函数个数和布隆过滤器长度

很显然,过小的布隆过滤器很快所有的 bit 位均为 1,那么查询任何值都会返回“可能存在”,起不到过滤的目的了。布隆过滤器的长度会直接影响误报率,布隆过滤器越长其误报率越小。


另外,哈希函数的个数也需要权衡,个数越多则布隆过滤器 bit 位置位 1 的速度越快,且布隆过滤器的效率越低;但是如果太少的话,那我们的误报率会变高。





image


k 为哈希函数个数,m 为布隆过滤器长度,n 为插入的元素个数,p 为误报率。

至于如何推导这个公式,我在知乎发布的文章有涉及,感兴趣可以看看,不感兴趣的话记住上面这个公式就行了。


最佳实践

常见的适用常见有,利用布隆过滤器减少磁盘 IO 或者网络请求,因为一旦一个值必定不存在的话,我们可以不用进行后续昂贵的查询请求。


另外,既然你使用布隆过滤器来加速查找和判断是否存在,那么性能很低的哈希函数不是个好选择,推荐 MurmurHash、Fnv 这些。


大Value拆分

Redis 因其支持 setbit 和 getbit 操作,且纯内存性能高等特点,因此天然就可以作为布隆过滤器来使用。但是布隆过滤器的不当使用极易产生大 Value,增加 Redis 阻塞风险,因此生成环境中建议对体积庞大的布隆过滤器进行拆分。


拆分的形式方法多种多样,但是本质是不要将 Hash(Key) 之后的请求分散在多个节点的多个小 bitmap 上,而是应该拆分成多个小 bitmap 之后,对一个 Key 的所有哈希函数都落在这一个小 bitmap 上。


参考资料

probabilistic data structures:bloom filter

bloom filters

本文遵守创作共享 CC BY-NC-SA 3.0协议

目录
相关文章
|
存储 SQL 安全
MySQL 安全加固配置(等保二级)
数据库安全是等保测评和网络安全中的重要的一项内容,本文介绍一些常见的加固配置。
5139 0
|
缓存 NoSQL Java
面试官:如何保证本地缓存的一致性?
面试官:如何保证本地缓存的一致性?
2802 1
|
消息中间件 Java 中间件
秒懂消息队列MQ,万字总结带你全面了解消息队列MQ
消息队列是大型分布式系统不可缺少的中间件,也是高并发系统的基石中间件,所以掌握好消息队列MQ就变得极其重要。接下来我就将从零开始介绍什么是消息队列?消息队列的应用场景?如何进行选型?如何在Spring Boot项目中整合集成消息队列。
25955 10
秒懂消息队列MQ,万字总结带你全面了解消息队列MQ
|
10月前
|
消息中间件 大数据 关系型数据库
RocketMQ实战—3.基于RocketMQ升级订单系统架构
本文主要介绍了基于MQ实现订单系统核心流程的异步化改造、基于MQ实现订单系统和第三方系统的解耦、基于MQ实现将订单数据同步给大数据团队、秒杀系统的技术难点以及秒杀商详页的架构设计和基于MQ实现秒杀系统的异步化架构。
695 64
RocketMQ实战—3.基于RocketMQ升级订单系统架构
|
消息中间件 存储 NoSQL
一文读懂Kafka Connect核心概念
Kafka Connect 是一种用于在 Apache Kafka 和其他系统之间可扩展且可靠地流式传输数据的工具。 它使快速定义将大量数据移入和移出 Kafka 的连接器变得简单。 Kafka Connect 可以摄取整个数据库或从所有应用程序服务器收集指标到 Kafka 主题中,使数据可用于低延迟的流处理。 导出作业可以将数据从 Kafka 主题传送到二级存储和查询系统或批处理系统进行离线分析。
|
10月前
|
监控 Java Unix
6个Java 工具,轻松分析定位 JVM 问题 !
本文介绍了如何使用 JDK 自带工具查看和分析 JVM 的运行情况。通过编写一段测试代码(启动 10 个死循环线程,分配大量内存),结合常用工具如 `jps`、`jinfo`、`jstat`、`jstack`、`jvisualvm` 和 `jcmd` 等,详细展示了 JVM 参数配置、内存使用、线程状态及 GC 情况的监控方法。同时指出了一些常见问题,例如参数设置错误导致的内存异常,并通过实例说明了如何排查和解决。最后附上了官方文档链接,方便进一步学习。
1561 4
|
9月前
|
安全 编译器 开发工具
鸿蒙系统”套壳论”的认知迷思与技术真相-优雅草卓伊凡
鸿蒙系统”套壳论”的认知迷思与技术真相-优雅草卓伊凡
315 0
鸿蒙系统”套壳论”的认知迷思与技术真相-优雅草卓伊凡
|
SQL 缓存 关系型数据库
MySQL Limit实现原理
本文深入解析了MySQL中`LIMIT`子句的实现原理及其在分页、性能优化等场景下的应用技巧。文章详细介绍了`LIMIT`的基本语法、MySQL内部处理流程,以及如何通过索引优化、覆盖索引等策略提升分页查询的性能,并提供了实践建议。
911 3
|
11月前
|
算法
面试场景题:如何设计一个抢红包随机算法
本文详细解析了抢红包随机算法的设计与实现,涵盖三种解法:随机分配法、二倍均值法和线段切割法。随机分配法通过逐次随机分配金额确保总额不变,但易导致两极分化;二倍均值法优化了金额分布,使每次抢到的金额更均衡;线段切割法则将总金额视为线段,通过随机切割点生成子金额,手气最佳金额可能更高。代码示例清晰,结果对比直观,为面试中类似算法题提供了全面思路。
1667 16
|
缓存 NoSQL Java
Spring Boot 3 整合 Spring Cache 与 Redis 缓存实战
Spring Boot 3 整合 Spring Cache 与 Redis 缓存实战