限制对比度自适应直方图均衡化

简介: 【6月更文挑战第12天】限制对比度自适应直方图均衡化。

普通直方图均衡化用于对图像全局进行调整,不能有效提高图像的局部对比度。为了提高图像的局部对比度,可将图像分成若干子块,对子块进行直方图均衡化,这就是自适应直方图均衡化。自适应直方图均衡化可能会造成图像的局部对比度过高,从而导致图像失真。为了解决此问题,可对局部对比度进行限制,这就是限制对比度自适应直方图均衡化(Contrast Limited Adaptive Histogram Equalization,CLAHE)。
OpenCV的cv2.createCLAHE()函数用于创建CLAHE对象,其基本格式如下。
retval=cv2.createCLAHE([clipLimit[,tileGridSize]])
参数说明如下。
retval为返回的CLAHE对象。
clipLimit为对比度受限的阈值,默认值为40.0。
tileGridSize为直方图均衡化的网格大小,默认值为(8,8)。
调用CLAHE对象的apply()方法,将其应用到图像中进行均衡化。

限制对比度自适应直方图均衡化

import cv2
import matplotlib.pyplot as plt
img=cv2.imread('clahe.jpg',0) #打开图像(单通道灰度图像)
cv2.imshow('original',img) #显示原图像
img2=cv2.equalizeHist(img)
cv2.imshow('equalizeHist',img2) #显示直方图均衡化后的图像
clahe=cv2.createCLAHE(clipLimit=5) #创建CLAHE对象
img3 = clahe.apply(img) #应用CLAHE对象
cv2.imshow('CLAHE',img3) #显示应用CLAHE对象后的图像
cv2.waitKey(0)

目录
相关文章
|
7月前
|
算法 计算机视觉
使用积分图的自适应二值化算法
使用积分图的自适应二值化算法
|
算法 数据可视化
Halcon边缘检测和线条检测(1),文章含自适应/动态二值化等算子
Halcon边缘检测和线条检测(1),文章含自适应/动态二值化等算子
1646 0
|
6月前
|
算法 计算机视觉
图像处理之调整亮度与对比度
图像处理之调整亮度与对比度
75 6
|
6月前
|
算法 Python
扭曲图像 鼻子拉伸
【6月更文挑战第28天】
34 0
|
6月前
|
计算机视觉
图像处理之调整亮度与饱和度
图像处理之调整亮度与饱和度
79 0
|
7月前
|
API 计算机视觉
【OpenCV】—图像对比度、亮度值调整
【OpenCV】—图像对比度、亮度值调整
使用纹理滤波器对图像进行纹理分割
说明如何根据纹理识别和分割区域。
92 0
|
计算机视觉
图像增强—空域平滑
图像增强—空域平滑
|
资源调度 算法 API
OpenCV_06 图像平滑:图像噪声+图像平滑+滤波
由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。常见的图像噪声有高斯噪声、椒盐噪声等。
143 0
Matalb-图像均值滤波,中值滤波,梯度锐化(sobel算子)的实现
Matalb-图像均值滤波,中值滤波,梯度锐化(sobel算子)的实现
200 0
Matalb-图像均值滤波,中值滤波,梯度锐化(sobel算子)的实现