机器学习入门:使用Scikit-learn进行实践

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 机器学习入门:使用Scikit-learn进行实践

机器学习入门:使用Scikit-learn进行实践

机器学习是人工智能的一个重要分支,它使计算机具备了从数据中学习和改进性能的能力,而不需要明确的编程。在这个教程中,我们将介绍如何使用Python中的Scikit-learn库进行机器学习任务。

什么是Scikit-learn?

Scikit-learn(简称Sklearn)是一个用于机器学习任务的Python库,它包含了许多用于分类、回归、聚类、降维和模型选择的工具。它建立在NumPy、SciPy和Matplotlib之上,为机器学习的实验提供了一个简单而高效的解决方案。

安装Scikit-learn

首先,确保你已经安装了Python和pip。然后可以使用以下命令来安装Scikit-learn:

pip install scikit-learn

机器学习流程

机器学习的一般流程如下:

数据收集:收集并准备数据集,确保数据质量。

数据预处理:对数据进行清洗、缺失值处理、特征选择、特征缩放等操作。

模型选择:选择合适的模型用于解决特定的问题。

模型训练:使用训练数据来训练模型。

模型评估:使用测试数据评估模型的性能。

1. 数据准备

首先,我们需要准备数据。我们采集了一份儿股票数据存入mysql 首先需要从mysql加载数据。

import pandas as pd
import mysql.connector

# 连接到 MySQL
conn = mysql.connector.connect(
    host="localhost",
    user="root",
    password="12456",
    database="mydb"
)

def get_data_from_mysql():
    # 查询数据
    query = "SELECT * FROM re_stock_code_price"

    # 将数据加载到 DataFrame 中
    df = pd.read_sql(query, conn)

    # 关闭 MySQL 连接
    conn.close()
    return df



2. 数据预处理

在数据预处理阶段,我们需要处理缺失值、标准化特征等。Scikit-learn提供了许多内置的工具来帮助我们完成这些任务。

def data_prepare(df):
    # 删除不相关的列如 'id', 'code', 'name', 'create_time'
    df = df.drop(columns=['id', 'code', 'name', 'create_time'])

    # 处理缺失值
    df.dropna(inplace=True)

    # 将数据分为特征和目标变量
    X = df.drop(columns=['rise'])  # 特征
    y = df['rise']  # 目标变量

    # 对目标变量进行二元分类处理,1代表涨,0代表跌
    y_binary = (y == 1).astype(int)

    # 数据预处理:标准化
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)

3. 拆分数据集

将数据集拆分为训练集和测试集,用于模型训练和评估。

 # 将数据分为训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_binary, test_size=0.2, random_state=42)

    return X_train, X_test, y_train, y_test

4. 选择模型

选择一个适当的模型用于解决我们的问题。Scikit-learn提供了许多常用的机器学习模型,如线性回归、逻辑回归、决策树、随机森林等。线性回归刚好可以满足我们预测股票涨跌的二分类问题。

from sklearn.linear_model import LinearRegression

# 初始化线性回归模型
    linear_model = LinearRegression()

5. 模型训练

使用训练数据来训练模型。

def model_train_linner(X_train, X_test, y_train, y_test):

    # 初始化线性回归模型
    linear_model = LinearRegression()

    # 训练线性回归模型
    linear_model.fit(X_train, y_train)

    # 预测
    y_pred_linear = linear_model.predict(X_test)
  1. 模型评估
    使用测试数据评估模型的性能。
python
Copy code
from sklearn.metrics import accuracy_score, classification_report

y_pred = model.predict(X_test)

评估模型

# 将线# 将线性回归预测值转化为二元类别(0或1)
    y_pred_linear_binary = (y_pred_linear > 0.5).astype(int)
    # 计算准确率
    accuracy_linear = accuracy_score(y_test, y_pred_linear_binary)
    print("线性回归模型准确率:", accuracy_linear)
    plt.figure(figsize=(10, 5))
    plt.scatter(y_test, y_pred_linear, color='green')
    plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], '--', color='red')
    plt.title('LinearRegression')
    plt.xlabel('Real')
    plt.ylabel('Estimate')
    plt.show()




结论

这篇教程介绍了如何使用Scikit-learn库进行股票数据预测的机器学习任务。我们学习了数据预处理、模型选择、训练和评估等步骤。希望这篇教程能帮助你入门机器学习,并开始实践自己的项目!

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
6月前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
21天前
|
机器学习/深度学习 数据采集 算法
量子机器学习入门:三种数据编码方法对比与应用
在量子机器学习中,数据编码方式决定了量子模型如何理解和处理信息。本文详解角度编码、振幅编码与基础编码三种方法,分析其原理、实现及适用场景,帮助读者选择最适合的编码策略,提升量子模型性能。
117 8
|
5月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
5月前
|
机器学习/深度学习 人工智能 算法
Scikit-learn:Python机器学习的瑞士军刀
想要快速入门机器学习但被复杂算法吓退?本文详解Scikit-learn如何让您无需深厚数学背景也能构建强大AI模型。从数据预处理到模型评估,从垃圾邮件过滤到信用风险评估,通过实用案例和直观图表,带您掌握这把Python机器学习的'瑞士军刀'。无论您是AI新手还是经验丰富的数据科学家,都能从中获取将理论转化为实际应用的关键技巧。了解Scikit-learn与大语言模型的最新集成方式,抢先掌握机器学习的未来发展方向!
794 12
Scikit-learn:Python机器学习的瑞士军刀
|
8月前
|
机器学习/深度学习 数据可视化 算法
Python与机器学习:使用Scikit-learn进行数据建模
本文介绍如何使用Python和Scikit-learn进行机器学习数据建模。首先,通过鸢尾花数据集演示数据准备、可视化和预处理步骤。接着,构建并评估K近邻(KNN)模型,展示超参数调优方法。最后,比较KNN、随机森林和支持向量机(SVM)等模型的性能,帮助读者掌握基础的机器学习建模技巧,并展望未来结合深度学习框架的发展方向。
Python与机器学习:使用Scikit-learn进行数据建模
|
7月前
|
数据采集 人工智能 API
生物医药蛋白分子数据采集:支撑大模型训练的技术实践分享
作为生物信息学领域的数据工程师,近期在为蛋白质相互作用预测AI大模型构建训练集时,我面临着从PDB、UniProt等学术数据库获取高质量三维结构、序列及功能注释数据的核心挑战。通过综合运用反爬对抗技术,成功突破了数据库的速率限制、验证码验证等反爬机制,将数据采集效率提升4倍,为蛋白质-配体结合预测模型训练提供了包含10万+条有效数据的基础数据集,提高了该模型预测的准确性。
194 1
|
7月前
|
机器学习/深度学习 人工智能 边缘计算
DistilQwen2.5蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen2.5 是阿里云人工智能平台 PAI 推出的全新蒸馏大语言模型系列。通过黑盒化和白盒化蒸馏结合的自研蒸馏链路,DistilQwen2.5各个尺寸的模型在多个基准测试数据集上比原始 Qwen2.5 模型有明显效果提升。这一系列模型在移动设备、边缘计算等资源受限的环境中具有更高的性能,在较小参数规模下,显著降低了所需的计算资源和推理时长。阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对 DistilQwen2.5 模型系列提供了全面的技术支持。本文详细介绍在 PAI 平台使用 DistilQwen2.5 蒸馏小模型的全链路最佳实践。
|
8月前
|
机器学习/深度学习 数据采集 分布式计算
大数据分析中的机器学习基础:从原理到实践
大数据分析中的机器学习基础:从原理到实践
361 3
|
10月前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
479 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
9月前
|
人工智能 容灾 Serverless
AI推理新纪元,PAI全球化模型推理服务的创新与实践
本次分享主题为“AI推理新纪元,PAI全球化模型推理服务的创新与实践”,由阿里云高级产品经理李林杨主讲。内容涵盖生成式AI时代推理服务的变化与挑战、play IM核心引擎的优势及ES专属网关的应用。通过LM智能路由、多模态异步生成等技术,PAI平台实现了30%以上的成本降低和显著性能提升,确保全球客户的业务稳定运行并支持异地容灾,目前已覆盖16个地域,拥有10万张显卡的推理集群。

热门文章

最新文章