机器学习入门:使用Scikit-learn进行实践

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 机器学习入门:使用Scikit-learn进行实践

机器学习入门:使用Scikit-learn进行实践

机器学习是人工智能的一个重要分支,它使计算机具备了从数据中学习和改进性能的能力,而不需要明确的编程。在这个教程中,我们将介绍如何使用Python中的Scikit-learn库进行机器学习任务。

什么是Scikit-learn?

Scikit-learn(简称Sklearn)是一个用于机器学习任务的Python库,它包含了许多用于分类、回归、聚类、降维和模型选择的工具。它建立在NumPy、SciPy和Matplotlib之上,为机器学习的实验提供了一个简单而高效的解决方案。

安装Scikit-learn

首先,确保你已经安装了Python和pip。然后可以使用以下命令来安装Scikit-learn:

pip install scikit-learn

机器学习流程

机器学习的一般流程如下:

数据收集:收集并准备数据集,确保数据质量。

数据预处理:对数据进行清洗、缺失值处理、特征选择、特征缩放等操作。

模型选择:选择合适的模型用于解决特定的问题。

模型训练:使用训练数据来训练模型。

模型评估:使用测试数据评估模型的性能。

1. 数据准备

首先,我们需要准备数据。我们采集了一份儿股票数据存入mysql 首先需要从mysql加载数据。

import pandas as pd
import mysql.connector

# 连接到 MySQL
conn = mysql.connector.connect(
    host="localhost",
    user="root",
    password="12456",
    database="mydb"
)

def get_data_from_mysql():
    # 查询数据
    query = "SELECT * FROM re_stock_code_price"

    # 将数据加载到 DataFrame 中
    df = pd.read_sql(query, conn)

    # 关闭 MySQL 连接
    conn.close()
    return df



2. 数据预处理

在数据预处理阶段,我们需要处理缺失值、标准化特征等。Scikit-learn提供了许多内置的工具来帮助我们完成这些任务。

def data_prepare(df):
    # 删除不相关的列如 'id', 'code', 'name', 'create_time'
    df = df.drop(columns=['id', 'code', 'name', 'create_time'])

    # 处理缺失值
    df.dropna(inplace=True)

    # 将数据分为特征和目标变量
    X = df.drop(columns=['rise'])  # 特征
    y = df['rise']  # 目标变量

    # 对目标变量进行二元分类处理,1代表涨,0代表跌
    y_binary = (y == 1).astype(int)

    # 数据预处理:标准化
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)

3. 拆分数据集

将数据集拆分为训练集和测试集,用于模型训练和评估。

 # 将数据分为训练集和测试集
    X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_binary, test_size=0.2, random_state=42)

    return X_train, X_test, y_train, y_test

4. 选择模型

选择一个适当的模型用于解决我们的问题。Scikit-learn提供了许多常用的机器学习模型,如线性回归、逻辑回归、决策树、随机森林等。线性回归刚好可以满足我们预测股票涨跌的二分类问题。

from sklearn.linear_model import LinearRegression

# 初始化线性回归模型
    linear_model = LinearRegression()

5. 模型训练

使用训练数据来训练模型。

def model_train_linner(X_train, X_test, y_train, y_test):

    # 初始化线性回归模型
    linear_model = LinearRegression()

    # 训练线性回归模型
    linear_model.fit(X_train, y_train)

    # 预测
    y_pred_linear = linear_model.predict(X_test)
  1. 模型评估
    使用测试数据评估模型的性能。
python
Copy code
from sklearn.metrics import accuracy_score, classification_report

y_pred = model.predict(X_test)

评估模型

# 将线# 将线性回归预测值转化为二元类别(0或1)
    y_pred_linear_binary = (y_pred_linear > 0.5).astype(int)
    # 计算准确率
    accuracy_linear = accuracy_score(y_test, y_pred_linear_binary)
    print("线性回归模型准确率:", accuracy_linear)
    plt.figure(figsize=(10, 5))
    plt.scatter(y_test, y_pred_linear, color='green')
    plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], '--', color='red')
    plt.title('LinearRegression')
    plt.xlabel('Real')
    plt.ylabel('Estimate')
    plt.show()




结论

这篇教程介绍了如何使用Scikit-learn库进行股票数据预测的机器学习任务。我们学习了数据预处理、模型选择、训练和评估等步骤。希望这篇教程能帮助你入门机器学习,并开始实践自己的项目!

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
26天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
41 2
|
27天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第35天】在这篇文章中,我们将深入探讨机器学习的世界。我们将从基础理论开始,然后逐步过渡到实际应用,最后通过代码示例来展示如何实现一个简单的机器学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和见解。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
37 2
|
1月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
40 3
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
33 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
24 1
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
62 2
|
2月前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
92 1
|
2月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
88 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
2月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第8天】在这篇文章中,我们将一起踏上一段旅程,探索机器学习的奥秘。我们首先会了解机器学习的基本概念,然后深入其理论基础,最后通过代码示例,将理论应用于实践。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。
50 0