使用Apache Spark从MySQL到Kafka再到HDFS的数据转移

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 使用Apache Spark从MySQL到Kafka再到HDFS的数据转移

使用Apache Spark从MySQL到Kafka再到HDFS的数据转移

在本文中,将介绍如何构建一个实时数据pipeline,从MySQL数据库读取数据,通过Kafka传输数据,最终将数据存储到HDFS中。我们将使用Apache Spark的结构化流处理和流处理功能,以及Kafka和HDFS作为我们的数据传输和存储工具。

1、环境设置:

首先,确保在您的环境中正确安装并配置了mysql、Kafka和HDFS。同时需要在idea中构建依赖配置的pom文件:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>spark_project</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <scala.version>2.12.12</scala.version>
        <spark.version>3.2.0</spark.version>
        <kafka.version>2.8.1</kafka.version>
    </properties>

    <dependencies>
        <!-- Spark dependencies -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.76</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql-kafka-0-10_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <!-- Kafka dependencies -->
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>${kafka.version}</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.28</version>
        </dependency>

        <!-- Scala library -->
        <dependency>
            <groupId>org.scala-lang</groupId>
            <artifactId>scala-library</artifactId>
            <version>${scala.version}</version>
        </dependency>   
    </dependencies>
</project>

mysql中表结构:


2、从MySQL读取数据到Kafka:

我们将使用Spark的结构化流处理功能从MySQL数据库中读取数据,并将其转换为JSON格式,然后将数据写入到Kafka主题中。以下是相应的Scala代码:

package org.example.mysql2kafka2hdfs

import org.apache.spark.sql.SparkSession

import java.util.Properties

object Mysql2Kafka {

  def main(args: Array[String]): Unit = {
    // 创建 SparkSession
    val spark = SparkSession.builder()
      .appName("MySQLToKafka")
      .master("local[*]")
      .getOrCreate()

    // 设置 MySQL 连接属性
    val mysqlProps = new Properties()
    mysqlProps.setProperty("user", "root")
    mysqlProps.setProperty("password", "12345678")
    mysqlProps.setProperty("driver", "com.mysql.jdbc.Driver")

    // 从 MySQL 数据库中读取数据
    val jdbcDF = spark.read.jdbc("jdbc:mysql://localhost:3306/mydb", "comment", mysqlProps)

    // 将 DataFrame 转换为 JSON 字符串
    val jsonDF = jdbcDF.selectExpr("to_json(struct(*)) AS value")


    // 将数据写入 Kafka
    jsonDF.show()
    jsonDF
      .write
      .format("kafka")
      .option("kafka.bootstrap.servers", "localhost:9092")
      .option("topic", "comment")
      .save()

    // 停止 SparkSession
    spark.stop()
  }

}

以上代码首先创建了一个SparkSession,然后设置了连接MySQL所需的属性。接着,它使用jdbc.read从MySQL数据库中读取数据,并将数据转换为JSON格式,最后将数据写入到名为"comment"的Kafka主题中。提示:topic主题会被自动创建。


从Kafka消费数据并写入HDFS:

接下来,我们将设置Spark Streaming来消费Kafka中的数据,并将数据保存到HDFS中。以下是相应的Scala代码:

package org.example.mysql2kafka2hdfs

import com.alibaba.fastjson.JSON
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}

case class Comment(author_name:String,
                   fans:String,
                   comment_text:String,
                   comment_time:String,
                   location:String,
                   user_gender:String)

object kafka2Hdfs {
  def main(args: Array[String]): Unit = {
    // 设置 SparkConf
    val sparkConf = new SparkConf()
      .setAppName("KafkaToHDFS")
      .setMaster("local[*]")

    // 创建 StreamingContext,每秒处理一次
    val ssc = new StreamingContext(sparkConf, Seconds(1))

    // 设置 Kafka 相关参数
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "localhost:9092", // Kafka broker 地址
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "spark-consumer-group", // Spark 消费者组
      "auto.offset.reset" -> "earliest", // 从最新的偏移量开始消费
      "enable.auto.commit" -> (false: java.lang.Boolean) // 不自动提交偏移量
    )

    // 设置要订阅的 Kafka 主题
    val topics = Array("comment")

    // 创建 Kafka Direct Stream
    val stream = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams)
    )


    // 从 Kafka 中读取消息,然后将其写入 HDFS
    stream.map({rdd=>
      val comment = JSON.parseObject(rdd.toString(), classOf[Comment])
      comment.author_name+","+comment.comment_text+","+comment.comment_time+","+comment.fans+","+comment.location+","+comment.user_gender
    }).foreachRDD { rdd =>
      if (!rdd.isEmpty()) {
        println(rdd)
        rdd.saveAsTextFile("hdfs://hadoop101:8020/tmp/")
      }
    }

    // 启动 Spark Streaming
    ssc.start()
    ssc.awaitTermination()
  }

}


以上代码设置了Spark Streaming来消费Kafka中的数据。它将JSON格式的数据解析为Comment类对象,并将其保存为逗号分隔的文本文件,最终存储在HDFS的/tmp目录中。



结论:

通过本文的介绍和示例代码,您现在应该了解如何使用Apache Spark构建一个实时数据流水线,从MySQL数据库读取数据,通过Kafka传输数据,最终将数据保存到HDFS中。这个流水线可以应用于各种实时数据处理和分析场景中。

相关文章
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
4月前
|
SQL 人工智能 关系型数据库
如何实现MySQL百万级数据的查询?
本文探讨了在MySQL中对百万级数据进行排序分页查询的优化策略。面对五百万条数据,传统的浅分页和深分页查询效率较低,尤其深分页因偏移量大导致性能显著下降。通过为排序字段添加索引、使用联合索引、手动回表等方法,有效提升了查询速度。最终建议根据业务需求选择合适方案:浅分页可加单列索引,深分页推荐联合索引或子查询优化,同时结合前端传递最后一条数据ID的方式实现高效翻页。
235 0
|
3月前
|
存储 关系型数据库 MySQL
在CentOS 8.x上安装Percona Xtrabackup工具备份MySQL数据步骤。
以上就是在CentOS8.x上通过Perconaxtabbackup工具对Mysql进行高效率、高可靠性、无锁定影响地实现在线快速全量及增加式数据库资料保存与恢复流程。通过以上流程可以有效地将Mysql相关资料按需求完成定期或不定期地保存与灾难恢复需求。
275 10
|
4月前
|
SQL 存储 缓存
MySQL 如何高效可靠处理持久化数据
本文详细解析了 MySQL 的 SQL 执行流程、crash-safe 机制及性能优化策略。内容涵盖连接器、分析器、优化器、执行器与存储引擎的工作原理,深入探讨 redolog 与 binlog 的两阶段提交机制,并分析日志策略、组提交、脏页刷盘等关键性能优化手段,帮助提升数据库稳定性与执行效率。
124 0
|
6月前
|
存储 SQL 缓存
mysql数据引擎有哪些
MySQL 提供了多种存储引擎,每种引擎都有其独特的特点和适用场景。以下是一些常见的 MySQL 存储引擎及其特点:
169 0
|
分布式计算 Java Spark
|
分布式计算 Java Spark
Spark Streaming 数据清理机制
大家刚开始用Spark Streaming时,心里肯定嘀咕,对于一个7*24小时运行的数据,cache住的RDD,broadcast 系统会帮忙自己清理掉么?还是说必须自己做清理?如果系统帮忙清理的话,机制是啥?
3133 0
|
5月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
272 0
|
8月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
359 79
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
820 2
ClickHouse与大数据生态集成:Spark & Flink 实战

推荐镜像

更多