基于spark的医疗大数据可视化大屏项目

简介: 基于spark的医疗大数据可视化大屏项目

基于spark的医疗大数据可视化大屏项目

项目背景

在当今的医疗领域,数据驱动的决策变得日益重要。心力衰竭作为常见的心血管疾病,其临床数据的分析对于改善患者治疗结果至关重要。本文将介绍如何利用Apache Spark进行大规模心力衰竭临床数据的分析,并结合机器学习模型,构建一个交互式的可视化大屏,以直观展示数据分析结果。

数据读取与清洗

使用PySpark库,我们首先读取CSV文件中的心力衰竭临床记录数据,并进行必要的数据清洗工作,包括处理缺失值和异常值。


from pyspark.sql import SparkSession

def read_data_csv(spark):
    df = spark.read.csv("heart_failure_clinical_records_dataset.csv", header=True, inferSchema=True)
    df.show()
    return df



数据分析

我们设计了多个SQL查询,以分析心力衰竭患者的不同临床特征:

1、患者年龄分布:分析不同年龄段患者的死亡事件频率。

def age_death(spark):

    df = spark.sql("""
    SELECT
    (CASE WHEN age >= 0 AND age < 50 THEN '0-49'
         WHEN age >= 50 AND age < 70 THEN '50-69'
         WHEN age >= 70 THEN '70+'
    END) AS age_group,
    sum(DEATH_EVENT) AS frequency
    FROM
        heart
    GROUP BY
    age_group;
    """)

    df.show()

    return df


2、性别比例:统计患者性别分布。

def sex_ana(spark):
    df = spark.sql("""
        SELECT
    sex,
    COUNT(*) AS count
FROM
    heart
GROUP BY
    sex;
        """)

    df.show()

    return df


3、糖尿病与CPK水平:对比糖尿病与非糖尿病患者的肌酸磷酸激酶(CPK)水平。

#3.糖尿病与非糖尿病患者的肌酸磷酸激酶(CPK)水平对比
def average_cpk(spark):
    df = spark.sql("""
    SELECT
    diabetes,
    AVG(creatinine_phosphokinase) AS average_cpk
FROM heart
GROUP BY diabetes;
        """)

    df.show()
    return df



4、死亡事件时间分布:统计每个时间段内的死亡事件数量。

#4.每个时间段的死亡事件数量
def death_sum(spark):
    df = spark.sql("""
        SELECT
        time,
        COUNT(*) AS death_count
    FROM heart
    WHERE death_event = 1
    GROUP BY time
    ORDER BY time;
            """)

    df.show()
    return df



5、射血分数区间分布:分析不同射血分数区间的患者数量。

def hypertension_prevalence(spark):
    df = spark.sql("""
            SELECT
        (CASE WHEN ejection_fraction < 30 THEN '< 30%'
             WHEN ejection_fraction >= 30 AND ejection_fraction < 40 THEN '30-39%'
             WHEN ejection_fraction >= 40 AND ejection_fraction < 50 THEN '40-49%'
             WHEN ejection_fraction >= 50 AND ejection_fraction < 60 THEN '50-59%'
             WHEN ejection_fraction >= 60 THEN '60% and Above'
            END) AS ef_range,
            COUNT(*) AS patient_count
        FROM heart
        GROUP BY ef_range
        ORDER BY ef_range;
                """)

    df.show()

    return df




6、血小板计数与死亡事件:探索血小板计数与死亡事件之间的关系。

#6.血小板计数与死亡事件的关系
def platelet_range_count(spark):
    df = spark.sql("""
                SELECT
    (CASE WHEN platelets < 100000 THEN '< 100000'
         WHEN platelets >= 100000 AND platelets < 150000 THEN '100000-150000'
         WHEN platelets >= 1500000 AND platelets < 300000 THEN '150000-300000'
         WHEN platelets >= 300000 AND platelets < 450000 THEN '300000-450000'
         WHEN platelets >= 450000 THEN '450000 and Above'
    END) AS platelet_range,
    SUM(CASE WHEN death_event = 1 THEN 1 ELSE 0 END) AS death_count
FROM heart
GROUP BY platelet_range;
                    """)

    df.show()

    return df


7、糖尿病与死亡事件:分析糖尿病患者的死亡事件数量。

#7.糖尿病与死亡事件的关系
def death_rate_diabetes(spark):
    df = spark.sql("""
        SELECT
      diabetes,
      SUM(death_event) AS death_events
    FROM
      heart
    GROUP BY
    diabetes;
                        """)

    df.show()

    return df


机器学习模型

使用Pandas和Scikit-learn库对数据进行预处理,并应用KMeans聚类算法来识别心力衰竭患者中的不同亚群。

数据预处理

我们选择特征列,使用StandardScaler进行数据标准化处理。

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
scaled_features = scaler.fit_transform(features)

确定最优聚类数

通过Elbow Method和轮廓系数(Silhouette Score)分析,我们确定最佳的聚类数。

K_values = range(2, 50)
wcss_values = []

for K in K_values:
    # 创建KMeans实例
    kmeans = KMeans(n_clusters=K, random_state=2)
    # 拟合模型
    kmeans.fit(scaled_features)
    # 计算WCSS
    wcss = kmeans.inertia_
    wcss_values.append(wcss)

绘制WCSS与K值的关系图

K_values = range(2, 50)
wcss_values = []

for K in K_values:
    # 创建KMeans实例
    kmeans = KMeans(n_clusters=K, random_state=2)
    # 拟合模型
    kmeans.fit(scaled_features)
    # 计算WCSS
    wcss = kmeans.inertia_
    wcss_values.append(wcss)

# 绘制WCSS与K值的关系图
plt.plot(K_values, wcss_values, 'bo-')
plt.xlabel('Number of clusters (K)')
plt.ylabel('WCSS')
plt.title('The Elbow Method showing the optimal k')
plt.show()

绘制轮廓系数与K值的关系图

# 计算每个K值的轮廓系数
silhouette_scores = []
for K in K_values:
    kmeans = KMeans(n_clusters=K, random_state=42)
    kmeans.fit(scaled_features)
    labels = kmeans.labels_
    score = silhouette_score(scaled_features, labels)
    silhouette_scores.append(score)

# 绘制轮廓系数与K值的关系图
plt.plot(K_values, silhouette_scores, 'ro-')
plt.xlabel('Number of clusters (K)')
plt.ylabel('Silhouette Score')
plt.title('Silhouette Scores for varying K')
plt.show()

可视化大屏设计

结合Spark分析结果和机器学习模型的输出,我们设计了一个可视化大屏,该大屏包括以下组件:

年龄分布图表:展示不同年龄段患者的死亡事件频率。

性别比例饼图:直观展示患者性别分布。

CPK水平对比图:通过箱线图展示糖尿病与非糖尿病患者的CPK水平对比。

时间序列图表:展示随时间变化的死亡事件数量。

射血分数分布图:条形图展示不同射血分数区间的患者数量。

血小板计数与死亡事件:通过堆叠条形图展示不同血小板计数范围的死亡事件数量。

糖尿病与死亡事件图表:散点图展示糖尿病患者的死亡事件数量。

import json

from service.task_service import get_age_death, get_diabetes_cpk, get_death_sum, get_hypertension_prevalence, \
    get_sex_ana, get_diabetes_death


class SourceDataDemo:

    def __init__(self):
        self.title = ''
        a,b = get_sex_ana()
        self.counter = {'name': '女性患者数量', 'value': b}
        self.counter2 = {'name': '男性患者数量', 'value': a}
        self.echart1_data = {
            'title': '患者年龄分布',
            'data': get_age_death()
        }
        self.echart2_data = {
            'title': '糖尿病与非糖尿病患者的(CPK)水平对比',
            'data': get_diabetes_cpk()
        }
        self.echarts3_1_data = {
            'title': '死亡情况',
            'data': get_death_sum()
        }
        self.echarts3_2_data = {
            'title': '性别分布',
            'data': [
                {"name": "男性", "value": a},
                {"name": "女性", "value": b},
            ]
        }
        self.echarts3_3_data = {
            'title': '糖尿病情况',
            'data': get_diabetes_death()
        }
        self.echart4_data = {
            'title': '患者死亡时间',
            'data': [
                {"name": "女性", "value": [3, 4, 3, 4, 3, 4, 3, 6, 2, 4, 2, 4, 3, 4, 3, 4, 3, 4, 3, 6, 2, 4, 4]},
                {"name": "男性", "value": [5, 3, 5, 6, 1, 5, 3, 5, 6, 4, 6, 4, 8, 3, 5, 6, 1, 5, 3, 7, 2, 5, 8]},
            ],
            'xAxis': ['01', '02', '03', '04', '05', '06', '07', '08', '09', '11', '12', '13', '14', '15', '16', '17',
                      '18', '19', '20', '21', '22', '23', '24'],
        }
        self.echart5_data = {
            'title': '不同射血分数区间的患者分布',
            'data': get_hypertension_prevalence()
        }

        self.echart6_data = {
            'title': '血小板计数与死亡事件的关系',
            'data': get_diabetes_death()
        }
        self.map_1_data = {
            'symbolSize': 100,
            'data': [
                {'name': '海门', 'value': 239},
                {'name': '鄂尔多斯', 'value': 231},
                {'name': '招远', 'value': 203},
            ]
        }

    @property
    def echart1(self):
        data = self.echart1_data
        echart = {
            'title': data.get('title'),
            'xAxis': [i.get("name") for i in data.get('data')],
            'series': [i.get("value") for i in data.get('data')]
        }
        return echart

    @property
    def echart2(self):
        data = self.echart2_data
        echart = {
            'title': data.get('title'),
            'xAxis': [i.get("name") for i in data.get('data')],
            'series': [i.get("value") for i in data.get('data')]
        }
        return echart

    @property
    def echarts3_1(self):
        data = self.echarts3_1_data
        echart = {
            'title': data.get('title'),
            'xAxis': [i.get("name") for i in data.get('data')],
            'data': data.get('data'),
        }
        return echart

    @property
    def echarts3_2(self):
        data = self.echarts3_2_data
        echart = {
            'title': data.get('title'),
            'xAxis': [i.get("name") for i in data.get('data')],
            'data': data.get('data'),
        }
        return echart

    @property
    def echarts3_3(self):
        data = self.echarts3_3_data
        echart = {
            'title': data.get('title'),
            'xAxis': [i.get("name") for i in data.get('data')],
            'data': data.get('data'),
        }
        return echart

    @property
    def echart4(self):
        data = self.echart4_data
        echart = {
            'title': data.get('title'),
            'names': [i.get("name") for i in data.get('data')],
            'xAxis': data.get('xAxis'),
            'data': data.get('data'),
        }
        return echart

    @property
    def echart5(self):
        data = self.echart5_data
        echart = {
            'title': data.get('title'),
            'xAxis': [i.get("name") for i in data.get('data')],
            'series': [i.get("value") for i in data.get('data')],
            'data': data.get('data'),
        }
        return echart

    @property
    def echart6(self):
        data = self.echart6_data
        echart = {
            'title': data.get('title'),
            'xAxis': [i.get("name") for i in data.get('data')],
            'data': data.get('data'),
        }
        return echart

    @property
    def map_1(self):
        data = self.map_1_data
        echart = {
            'symbolSize': data.get('symbolSize'),
            'data': data.get('data'),
        }
        return echart


class SourceData(SourceDataDemo):

    def __init__(self):
        """
        按照 SourceDataDemo 的格式覆盖数据即可
        """
        super().__init__()
        self.title = '心力衰竭数据可视化大屏'


if __name__ == '__main__':
    sd = SourceData()
    print(sd.echart1())


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
相关文章
|
11天前
|
数据采集 大数据
大数据实战项目之电商数仓(二)
大数据实战项目之电商数仓(二)
|
6天前
|
存储 分布式计算 Hadoop
Spark和Hadoop都是大数据处理领域的重要工具
【6月更文挑战第17天】Spark和Hadoop都是大数据处理领域的重要工具
34 7
|
10天前
|
分布式计算 大数据 数据处理
Apache Spark在大数据处理中的应用
Apache Spark是大数据处理的热门工具,由AMPLab开发并捐赠给Apache软件基金会。它以内存计算和优化的执行引擎著称,提供比Hadoop更快的处理速度,支持批处理、交互式查询、流处理和机器学习。Spark架构包括Driver、Master、Worker Node和Executor,核心组件有RDD、DataFrame、Dataset、Spark SQL、Spark Streaming、MLlib和GraphX。文章通过代码示例展示了Spark在批处理、交互式查询和实时数据处理中的应用,并讨论了其优势(高性能、易用性、通用性和集成性)和挑战。【6月更文挑战第11天】
37 6
|
7天前
|
分布式计算 Hadoop 大数据
大数据技术:Hadoop与Spark的对比
【6月更文挑战第15天】**Hadoop与Spark对比摘要** Hadoop是分布式系统基础架构,擅长处理大规模批处理任务,依赖HDFS和MapReduce,具有高可靠性和生态多样性。Spark是快速数据处理引擎,侧重内存计算,提供多语言接口,支持机器学习和流处理,处理速度远超Hadoop,适合实时分析和交互式查询。两者在资源占用和生态系统上有差异,适用于不同应用场景。选择时需依据具体需求。
|
10天前
|
分布式计算 Kubernetes Spark
大数据之spark on k8s
大数据之spark on k8s
|
10天前
|
机器学习/深度学习 数据采集 分布式计算
基于spark的大数据分析预测地震受灾情况的系统设计
基于spark的大数据分析预测地震受灾情况的系统设计
|
12天前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI操作报错合集之在ODPS的xxx_dev项目空间调用easyrec训练,需要访问yyy项目空间的OSS,出现报错,是什么导致的
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
10天前
|
存储 分布式计算 并行计算
【大数据】计算引擎:Spark核心概念
【大数据】计算引擎:Spark核心概念
34 0
|
11天前
|
消息中间件 分布式计算 Hadoop
大数据实战项目之电商数仓(一)
大数据实战项目之电商数仓(一)
|
12天前
|
机器学习/深度学习 分布式计算 DataWorks
MaxCompute产品使用合集之如何进行跨项目查询表
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。