实战Linux I/O多路复用:借助epoll,单线程高效管理10,000+并发连接

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
性能测试 PTS,5000VUM额度
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
简介: 本文介绍了如何使用Linux的I/O多路复用技术`epoll`来高效管理超过10,000个并发连接。`epoll`允许单线程监控大量文件描述符,显著提高了资源利用率。文章详细阐述了`epoll`的几个关键接口,包括`epoll_create`、`epoll_ctl`和`epoll_wait`,以及它们在处理并发连接中的作用。此外,还探讨了`epoll`在高并发TCP服务场景的应用,展示了如何通过`epoll`和线程/协程池来构建服务框架。

实战Linux I/O多路复用:借助epoll,单线程高效管理10,000+并发连接

引言

  在应对高并发连接的传统策略中,普遍采取为每个连接配置单独线程或进程的直接方式,管理其I/O操作。此法虽直观易行,但随业务规模扩张,线程资源需求急剧上升。相反,Linux下的I/O多路复用技术,尤其是epoll,展示了一种高效路径:单一线程即可监控成千上万的文件描述符,极大提升了资源使用效率。

  I/O 多路复用的场景有很多,也比较实用。通常用法epoll线程 + 线程/协程池处理并发场景,这里做一个简单的实例使用,以便后续查阅。

概述

selectpoll同样能够满足多路复用的需求,在特定场景下各有千秋。不过,当面对需监控大量文件句柄的场景时,epoll凭借其高效的设计和更高的性能表现,成为更为优选的解决方案。其不仅在资源管理和事件处理上展现出明显优势,而且编程接口的灵活性也更为优雅。本文主要聚焦于epoll的实践应用,实例学习其高效而精炼的使用方法。

epoll常用接口

epoll的描述man手册已经记录比较详细了,这里列举一下常用的接口:

  1. epoll_create / epoll_create1
  • 原型: int epoll_create(int size) /  int epoll_create1(int flags)    
  • 功能: 创建一个新的epoll实例,返回一个文件描述符,该描述符代表epoll对象。
  • 参数:
  • size: 接受一个参数 size,在Linux 2.6.8以后这个参数被忽略,但仍要求传递一个大于0的值;
  • flags: 接收一个标志。为0作用与epoll_create相同;为EPOLL_CLOEXEC时,会在execve() 调用后自动关闭 epoll 文件描述符,避免子进程继承。
  • 返回值
  • -1:发生错误,设置errno> 0:epoll文件描述符。
  1. epoll_ctl
  • 原型:  int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event)
  • 功能: 用于控制已经创建好的epoll实例中的文件描述符事件集合。
  • 参数:
  • epfd:epoll_create() 返回的文件描述符。
  • op:操作类型,可以是 EPOLL_CTL_ADD(添加)、EPOLL_CTL_MOD(修改)、EPOLL_CTL_DEL(删除)。
  • fd:要操作的文件描述符。
  • event:一个指向struct epoll_event的指针,定义了关注的事件类型(如 EPOLLIN, EPOLLOUT)及其它数据。
  • 返回值
  • -1:发生错误,设置errno0:成功。
  1. epoll_wait
  • 原型: int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int timeout)
  • 功能: 阻塞等待直到epoll实例中的一个或多个文件描述符变为就绪状态(可读、可写或出现错误)。
  • 参数:
  • epfd:epoll实例的文件描述符。
  • events:指向struct epoll_event结构体数组的指针,用于存储就绪事件。
  • maxevents:events 数组的最大容量。
  • timeout:等待超时时间,单位为毫秒,-1表示无限等待,0 表示立即返回,正值为等待的最长时间。
  • 返回值:
  • -1:发生错误,设置errno0:超时;>0: 准备好的文件描述符数量。

应用场景

  在高并发TCP服务场景中,服务端通过部署epoll + 线程/协程池机制,构建高效服务框架。epoll作为核心监听器,统一管理并快速响应来自不同客户端的连接请求,其事件驱动特性确保了对socket就绪状态的即时检测。与此同时,这些请求被异步地分发至线程/协程池中,利用任务队列和工作线程(或轻量级协程)并发执行,提升数据处理能力。

类图

EpollEventHandler类图

  • EpollEventHandler (Epoll事件调度器类)
    该类负责注册并管理监听句柄,实时监控Epoll事件,确保对每个就绪连接的快速响应与处理。
  • IEpollEvent (监听接口类)
    此类定义了句柄注册与事件处理的标准操作,使EpollEventHandler能统一管理不同类型的监听对象,实现接口的标准化与句柄处理的灵活性。
  • PSocket (可被监听的Socket实现类)
    继承自IEpollEvent的实现类,封装标准的Socket操作,同时定义针对Epoll事件的响应逻辑,实现Socket交互的统一管理和定制化处理。
  • PUart (可被监听的Uart实现类)
    继承自IEpollEvent的实现类,封装了标准Uart操作,同时定义针对Epoll事件的响应逻辑,实现Uart交互的统一管理和定制化处理。
  • 其他可被监听的实现类
    还可以实现其他可被epoll监听的类型类,通过继承IEpollEvent实现可被EpollEventHandler统一注册,再通过内部EpollEvent实现差异化响应处理。

源码实现

编程环境

① 编译环境: Linux环境

② 语言: C++语言

接口定义

  • EpollEventHandler
class EpollEventHandler
{
public:
    virtual ~EpollEventHandler();
    static EpollEventHandler* GetInstance();
    void AddPoll(IEpollEvent* p);
    void DelPoll(IEpollEvent* p);
    void EpollLoop(bool bRun);
private:
    EpollEventHandler(int size = 0);
private:
    int     mHandle;
    bool    mRun;
    std::map<int, IEpollEvent*> mEpollMap;   // fd, type, IEpollEvent
};

EpollEventHandler主要封装了epoll接口,集中管理并监听所有IEpollEvent实例。在EpollLoop循环中,阻塞等待并处理各类句柄事件,一旦事件触发,即通过多态调用IEpollEvent的虚函数来EpollEvent执行特定的事件处理逻辑,从而实现差异化的处理需求。

void EpollEventHandler::EpollLoop(bool bRun)
{
    struct epoll_event ep[32];
    mRun = bRun;
    do {
        if (!mRun) {
            break;
        }
        // 无事件时, epoll_wait阻塞, 等待
        int count = epoll_wait(mHandle, ep, sizeof(ep)/sizeof(ep[0]), -1);
        if (count <= 0) {
            continue;
        }
        for (int i = 0; i < count; i++) {
            IEpollEvent* p = (IEpollEvent*)ep[i].data.ptr;
            if (p == nullptr) {
                continue;
            }
            // TODO: 丢到线程/协程池响应
            p->EpollEvent(p->GetEpollFd(), p->GetEpollType(), p->GetArgs());
        }
    } while(mRun);
    SPR_LOGD("EpollLoop exit\n");
}
  • IEpollEvent
class IEpollEvent
{
public:
    IEpollEvent(int fd, EpollType eType = EPOLL_TYPE_BEGIN, void* arg = nullptr)
        : mEpollFd(fd), mEpollType(eType), mArgs(arg) {};
    virtual ~IEpollEvent() = default;
    virtual ssize_t Write(int fd, const std::string& bytes);
    virtual ssize_t Read(int fd, std::string& bytes);
    virtual void*   EpollEvent(int fd, EpollType eType, void* arg) = 0;
    int         GetEpollFd()        { return mEpollFd; }
    EpollType   GetEpollType()      { return mEpollType; }
    void*       GetArgs()           { return mArgs; }
protected:
    int         mEpollFd;
    EpollType   mEpollType;
    void*       mArgs;
};

IEpollEvent主要统一句柄注册与事件处理的标准操作,方便EpollEventHandler统一监听,通过EpollEvent实现差异化响应。

  • PSocket
class PSocket : public IEpollEvent
{
public:
    PSocket(int domain, int type, int protocol,
               std::function<void(int, void*)> cb, void* arg = nullptr);
    PSocket(int sock,
               std::function<void(int, void*)> cb, void* arg = nullptr);
    virtual ~PSocket();
    void Close();
    int AsTcpServer(short bindPort, int backlog);
    int AsTcpClient(bool con = false,
                    const std::string& srvAddr = "",
                    short srvPort = 0,
                    int rcvLen = 512 * 1024,
                    int sndLen = 512 * 1024);
    int AsUdpServer(short bindPort, int rcvLen = 512 * 1024);
    int AsUdpClient(const std::string& srvAddr, short srvPort, int sndLen = 512 * 1024);
    int AsUnixStreamServer(const std::string& serverName, int backlog);
    int AsUnixStreamClient(bool con = false,
                           const std::string& serverName = "",
                           const std::string& clientName = "");
    int AsUnixDgramServer(const std::string& serverName);
    int AsUnixDgramClient(const std::string& serverName);
    virtual void*   EpollEvent(int fd, EpollType eType, void* arg) override;
private:
    bool            mEnable;
    PSocketType     mSockType;
    std::function<void(int, void*)> mCb;
};
  • PUart
class PUart : public IEpollEvent
{
public:
    PUart(const std::string& devPath,
            std::function<void(int, char *, long, void*)> cb,
            void*   arg     = nullptr,
            speed_t rate    = B115200,
            int     parity  = 0,
            int     stopbit = 1
            );
    virtual ~PUart();
    void* EpollEvent(int fd, EpollType eType, void* arg) override;
    bool  SetupPort(speed_t rate, int parity, int stopbit);
    void  Close();
private:
    std::function<void(int, char *, long, void*)> mCb;
    std::string mDevFile;
};

测试效果

  • 测试代码这里实现一个TCP server的功能,响应多个客户端请求。
int main(int argc, const char *argv[])
{
    std::mutex epFdMutex;
    EpollEventHandler *pEpoll = EpollEventHandler::GetInstance();
    auto tcpClient = make_shared<PSocket>(AF_INET, SOCK_STREAM, 0, [&](int sock, void *arg) {
        PSocket* pCliObj = (PSocket*)arg;
        if (pCliObj == nullptr) {
            SPR_LOGE("PSocket is nullptr\n");
            return;
        }
        std::string rBuf;
        int rc = pCliObj->Read(sock, rBuf);
        if (rc > 0) {
            SPR_LOGD("# RECV [%d]> %s\n", sock, rBuf.c_str());
        } else {
            pEpoll->DelPoll(pCliObj);
            SPR_LOGD("## CLOSE [%d]\n", sock);
            std::lock_guard<std::mutex> lock(epFdMutex);
            pCliObj->Close();
        }
    });
    tcpClient->AsTcpClient(true, "127.0.0.1", 8080);
    pEpoll->AddPoll(tcpClient.get());
    std::thread wThread([&]{
        while(true) {
            std::lock_guard<std::mutex> lock(epFdMutex);
            tcpClient->Write(tcpClient->GetEpollFd(), "Hello World");
            sleep(1);
        }
    });
    pEpoll->EpollLoop(true);
    wThread.join();
    return 0;
}
  • 测试结果
$ ./sample_tcpserver
  81 EpollEvent D: Add epoll fd 4
  81 EpollEvent D: Add epoll fd 5
  81 EpollEvent D: Add epoll fd 6
  54 TcpServer D: # RECV [6]> I'm Client A
  58 TcpServer D: # SEND [6]> ACK
  54 TcpServer D: # RECV [5]> I'm Client B
  58 TcpServer D: # SEND [5]> ACK
  54 TcpServer D: # RECV [6]> I'm Client A
  58 TcpServer D: # SEND [6]> ACK
  54 TcpServer D: # RECV [5]> I'm Client B
  58 TcpServer D: # SEND [5]> ACK

测试结果上看,sample_tcpserver能够实现一个线程同时监听两个客户端的请求和应答。

总结

  • 本篇主要操练一下epoll的常规使用,简单做一下封装能够实现epoll监听各个类型的句柄事件。其实epoll还可以监听消息队列、串口等其他文件句柄,深入挖掘一下,能够实现很多优雅的操作。
  • 本实践深受先前一位导师兼朋友所分享代码的启发,其创新性地提出了采用epoll结合协程机制来替代传统多线程架构的方法,让我受益匪浅。
  • epoll的妙用远不止于此,后续的代码会不断挖掘,并集成到个人的开源项目中。
相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
24天前
|
数据库连接 Linux Shell
Linux下ODBC与 南大通用GBase 8s数据库的无缝连接配置指南
本文详细介绍在Linux系统下配置GBase 8s数据库ODBC的过程,涵盖环境变量设置、ODBC配置文件编辑及连接测试等步骤。首先配置数据库环境变量如GBASEDBTDIR、PATH等,接着修改odbcinst.ini和odbc.ini文件,指定驱动路径、数据库名称等信息,最后通过catalog.c工具或isql命令验证ODBC连接是否成功。
|
2月前
|
Linux 网络安全
Linux虚拟机与主机和Xshell的连接问题解决
Linux虚拟机与主机和Xshell的连接问题解决
99 1
|
3月前
|
NoSQL Linux Redis
linux安装单机版redis详细步骤,及python连接redis案例
这篇文章提供了在Linux系统中安装单机版Redis的详细步骤,并展示了如何配置Redis为systemctl启动,以及使用Python连接Redis进行数据操作的案例。
90 2
|
3月前
|
Unix Linux 网络安全
python中连接linux好用的模块paramiko(附带案例)
该文章详细介绍了如何使用Python的Paramiko模块来连接Linux服务器,包括安装配置及通过密码或密钥进行身份验证的示例。
139 1
|
2月前
|
关系型数据库 MySQL Linux
Navicat 连接 Windows、Linux系统下的MySQL 各种错误,修改密码。
使用Navicat连接Windows和Linux系统下的MySQL时可能遇到的四种错误及其解决方法,包括错误代码2003、1045和2013,以及如何修改MySQL密码。
278 0
|
3月前
|
Linux Python
Linux之centos安装clinkhouse以及python如何连接
Linux之centos安装clinkhouse以及python如何连接
|
4月前
|
Linux 网络安全 网络架构
如何处理在学校Linux连接不上服务器
如何处理在学校Linux连接不上服务器
|
5月前
|
安全 Linux 网络安全
部署07--远程连接Linux系统,利用FinalShell可以远程连接到我们的操作系统上
部署07--远程连接Linux系统,利用FinalShell可以远程连接到我们的操作系统上
|
安全 数据可视化 关系型数据库
何远程连接阿里云主机服务器(Linux系统)
何远程连接阿里云主机服务器(Linux系统)
2059 0
何远程连接阿里云主机服务器(Linux系统)
|
关系型数据库 MySQL Linux
用sqlyog远程连接LINUX系统的MYSQL出现错解决方法
无法给远程连接的用户权限问题。结果这样子操作mysql库,即可解决。在本机登入mysql后,更改 “mysql” 数据库里的 “user” 表里的 “host” 项,从”localhost”改称'%'。
1761 0
下一篇
DataWorks